A typical edge compute SoC capable of handling deep learning workloads at low power is usually heterogeneous by design. It typically comprises multiple initiators such as real-time IPs for capture and display, hardware accelerators for ISP, computer vision, deep learning engines, codecs, DSP or ARM cores for general compute, GPU for 2D/3D visualization. Every participating initiator transacts with common resources such as L3/L4/DDR memory systems to seamlessly exchange data between them. A careful orchestration of this dataflow is important to keep every producer/consumer at full utilization without causing any drop in real-time performance which is critical for automotive applications. The software stack for such complex workflows can be quite intimidating for customers to bring-up and more often act as an entry barrier for many to even evaluate the device for performance. In this paper we propose techniques developed on TI’s latest TDA4V-Mid SoC, targeted for ADAS and autonomous applications, which is designed around ease-of-use but ensuring device entitlement class of performance using open standards such as DL runtimes, OpenVx and GStreamer.
Auto-Valet parking is a key emerging function for Advanced Driver Assistance Systems (ADAS) enhancing traditional surround view system providing more autonomy during parking scenario. Auto-Valet parking system is typically built using multiple HW components e.g. ISP, micro-controllers, FPGAs, GPU, Ethernet/PCIe switch etc. Texas Instrument’s new Jacinto7 platform is one of industry’s highest integrated SoC replacing these components with a single TDA4VMID chip. The TDA4VMID SoC can concurrently do analytics (traditional computer vision as well as deep learning) and sophisticated 3D surround view, making it a cost effective and power optimized solution. TDA4VMID is a truly heterogeneous architecture and it can be programmed using an efficient and easy to use OpenVX based middle-ware framework to realize distribution of software components across cores. This paper explains typical functions for analytics and 3D surround view in auto-valet parking system with data-flow and its mapping to multiple cores of TDA4VMID SoC. Auto-valet parking system can be realized on TDA4VMID SOC with complete processing offloaded of host ARM to the rest of SoC cores, providing ample headroom for customers for future proofing as well as ability to add customer specific differentiation.