Back to articles
Article
Volume: 35 | Article ID: AVM-113
Image
OpTIFlow – An optimized end-to-end dataflow for accelerating deep learning workloads on heterogeneous SoCs
  DOI :  10.2352/EI.2023.35.16.AVM-113  Published OnlineJanuary 2023
Abstract
Abstract

A typical edge compute SoC capable of handling deep learning workloads at low power is usually heterogeneous by design. It typically comprises multiple initiators such as real-time IPs for capture and display, hardware accelerators for ISP, computer vision, deep learning engines, codecs, DSP or ARM cores for general compute, GPU for 2D/3D visualization. Every participating initiator transacts with common resources such as L3/L4/DDR memory systems to seamlessly exchange data between them. A careful orchestration of this dataflow is important to keep every producer/consumer at full utilization without causing any drop in real-time performance which is critical for automotive applications. The software stack for such complex workflows can be quite intimidating for customers to bring-up and more often act as an entry barrier for many to even evaluate the device for performance. In this paper we propose techniques developed on TI’s latest TDA4V-Mid SoC, targeted for ADAS and autonomous applications, which is designed around ease-of-use but ensuring device entitlement class of performance using open standards such as DL runtimes, OpenVx and GStreamer.

Subject Areas :
Views 78
Downloads 28
 articleview.views 78
 articleview.downloads 28
  Cite this article 

Shyam Jagannathan, Vijay Pothukuchi, Jesse Villarreal, Kumar Desappan, Manu Mathew, Rahul Ravikumar, Aniket Limaye, Mihir Mody, Pramod Swami, Piyali Goswami, Carlos Rodriguez, Emmanuel Madrigal, Marco Herrera, "OpTIFlow – An optimized end-to-end dataflow for accelerating deep learning workloads on heterogeneous SoCsin Electronic Imaging,  2023,  pp 113--1 - 113-6,  https://doi.org/10.2352/EI.2023.35.16.AVM-113

 Copy citation
  Copyright statement 
Copyright © 2023, Society for Imaging Science and Technology 2023
ei
Electronic Imaging
2470-1173
2470-1173
Society for Imaging Science and Technology
IS&T 7003 Kilworth Lane, Springfield, VA 22151 USA