Back to articles
Articles
Volume: 28 | Article ID: art00018_2
Image
Digital Fabrication of 3D Bio Devices Utilizing PELID (Patterning with Electrostatically-Injected Droplet) Method
  DOI :  10.2352/ISSN.2169-4451.2012.28.1.art00018_2  Published OnlineJanuary 2012
Abstract

In this paper, we fabricated soft 3D bio devices utilizing PELID (Patterning with Electrostatically-Injected Droplet) method. It is preferable to perform laboratory experiments with 3D structures in bioengineering. We have investigated mechanism and fundamental characteristics of the PELID method and now been applying for new printing technology of high image quality and 3D printing technology. The method has two merits, higher resolution than commercial printer and ability to eject with highly viscous liquid. We can eject viscous paste that viscosity is 30000 mPas. At DF 2010, I already presented that cells and scaffolds were printed to fabricate 3D cell structures because scaffolds assisted the weight of cells. Now, we should fabricate 3D structure that has cave because real 3D structure has blood vessel like cave. It is difficult to fabricate 3D structure that has cave. Gelatin is used as sacrificial layer. When the printed 3D structure is put into hot water, gelatin is removed. With this technique, we can print 3D structure that has cave. The tube filled with the liquid that contained gelatin and the tube filled with the liquid that contained calcium alginate was hanged down perpendicular to a dish. Voltage was applied between the syringes and the dish by power supplies (voltage range: −5kV ∼ +5kV, Matsusada Precision Inc, Tokyo, HVR-10P). The air gap was adjusted by a z-stage and the plate electrode was moved in x and y directions with two linear motors. PC controlled voltage application and motion of linear stages. We fabricated 3D bio devices.

Subject Areas :
Views 19
Downloads 2
 articleview.views 19
 articleview.downloads 2
  Cite this article 

Shinjiro Umezu, Tatsuru Hatta, Hitoshi Ohmori, "Digital Fabrication of 3D Bio Devices Utilizing PELID (Patterning with Electrostatically-Injected Droplet) Methodin Proc. IS&T Int'l Conf. on Digital Printing Technologies and Digital Fabrication (NIP28),  2012,  pp 338 - 340,  https://doi.org/10.2352/ISSN.2169-4451.2012.28.1.art00018_2

 Copy citation
  Copyright statement 
Copyright © Society for Imaging Science and Technology 2012
72010410
NIP & Digital Fabrication Conference
nip digi fabric conf
2169-4451
Society of Imaging Science and Technology
7003 Kilworth Lane, Springfield, VA 22151, USA