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Abstract 

In this paper, we fabricated soft 3D bio devices utilizing 
PELID (Patterning with Electrostatically-Injected Droplet) meth-
od. It is preferable to perform laboratory experiments with 3D 
structures in bioengineering. We have investigated mechanism and 
fundamental characteristics of the PELID method and now been 
applying for new printing technology of high image quality and 3D 
printing technology. The method has two merits, higher resolution 
than commercial printer and ability to eject with highly viscous 
liquid. We can eject viscous paste that viscosity is 30000 mPas. At 
DF 2010, I already presented that cells and scaffolds were printed 
to fabricate 3D cell structures because scaffolds assisted the 
weight of cells. Now, we should fabricate 3D structure that has 
cave because real 3D structure has blood vessel like cave. It is dif-
ficult to fabricate 3D structure that has cave. Gelatin is used as 
sacrificial layer. When the printed 3D structure is put into hot wa-
ter, gelatin is removed. With this technique, we can print 3D struc-
ture that has cave. The tube filled with the liquid that contained 
gelatin and the tube filled with the liquid that contained calcium 
alginate was hanged down perpendicular to a dish. Voltage was 
applied between the syringes and the dish by power supplies (volt-
age range: -5kV ~ +5kV, Matsusada Precision Inc, Tokyo, HVR-
10P). The air gap was adjusted by a z-stage and the plate elec-
trode was moved in x and y directions with two linear motors. PC 
controlled voltage application and motion of linear stages. We 
fabricated 3D bio devices. 

Introduction 
       The goal of this study is to fabricate precision 3-Dimensional 
cell structures utilizing PELID (Patterning with ELectrostatically-
Injected Droplet) method. It is preferable to perform laboratory 
experiments with 3D cell structures in tissue engineering and arti-
ficial organ. However it is difficult to fabricate 3D cell structures 
because own weight of cell is above the bonding force between 
cells. Many researchers carried out studies on Bio-print. 3D posi-
tioning of calcium alginate that contained living cells utilizing 
commercial inkjet was succeed [1, 2]. The papers described that 
calcium alginate was used as scaffolds. Calcium alginate is useful 
to fabricate 3 Dimensional structures because the stiffness is rela-
tively high. We applied the PELID method for patterning living 
cells and scaffolds to fabricate 3D cell structures [3, 4]. Our inkjet 
technology, PELID method, has two merits; those are high resolu-
tion and ability to eject highly viscous liquid. These merits are 
suitable to print cells precisely and eject highly viscous scaffolds. 
Bone stem cells [3] and MDCK cells [4] were printed utilizing the 
PELID method. We utilize collagen and/or gelatin as scaffolds to 

fabricate 3D cell structures because collagen and gelatin are most 
often-used scaffolds in vivo. However, the height of the fabricated 
3D structures was low because the stiffness was low in case that 
collagen and gelatin was used as scaffolds. To clear this problem, 
we plan to print calcium alginate that supports collagen. In this pa-
per, we investigate fundamental characteristics to print calcium al-
ginate and optimize the print condition to fabricate high 3D cell 
structures. 

Experimental Set-up 
       An experimental set-up shown in Fig.1 is constructed to inves-
tigate characteristics to print calcium alginate utilizing the PELID 
method. Figure 1 (b) shows the enlarged view around the nozzle. 
Calcium alginate is produced when high voltage is applied be-
tween nozzle that is filled with aqueous solution of sodium algi-
nate and target that is slightly filled with aqueous solution of cal-
cium chloride. The nozzle is hanged down perpendicular to the 
target. Voltage is applied between the nozzle and the target by a 
power supply (voltage range: -5kV ~ +5kV, Matsusada Precision 
Inc, Tokyo, HVR-10P). The air gap is adjusted by a z-stage and 
the dish is moved in x and y directions with two linear motors. A 
PC controls voltage application and motion of the linear stages.  
       When the printed 3D structure is high, the electric field around 
the tip of the nozzle is relatively weak because the air gap between  
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(a) Schematic diagram
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(b) Enlarged view around the nozzle. 

Figure 1  Experimental set-up to print calcium alginate utilizing PELID method. 
(1: nozzle, insulative capillary tube is mounted at tip of syringe, 2: plate elec-
trode, 3: DC high voltage power supply, 4: xy linear stage, 5: z stage, 6: tank, 
filled with aqueous solution of sodium alginate, 7: light, 8: high-speed camera, 
9: target, dish or sheet contained with aqueous solution of calcium chloride) 
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Figure 2  Improved  experimental set-up to print calcium alginate utilizing 
PELID method. (10: plate electrode with a hole) 

the tip and the target is short. To prevent this problem, we con-
structed improvec experimental set-up shown in Fig. 2. 
       The formation of the droplets is observed with a high-speed 
microscope camera (Photron Inc., Japan, FAST-CAM-MAX 120K 
model 1) with a light (Sanei Electric Inc., Japan, XEF-501S). The 
temperature around the experimental set-up is controlled at 38 de-
grees C because viscosity of gelatin is high in case of low tempera-
ture and cells are died over 40 degrees C.  

Results 
       Scaffolds, in this case calcium alginate, should be printed pre-
cisely to construct 3D cell structures. We add glycerin to aqueous 

solution of sodium alginate to reduce the viscosity. Figure 3 shows 
the line width when the applied voltage is changed in case that  
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Figure 3  Line width of printed calcium alginate in case that the density of 
glycerin was attached. 

 
Figure 4  Line strucute of calcium alginate utilizing the PELID method. 

 
Figure 5  Another line structure of calcium alginate utilizing the PELID meth-
od. 
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Figure 6  Printed 3D structure utilizing the PELID method. (Two nozzles were 
used in this experiment. One was aqueous solution of sodium alginate with 
red pigment ink and the other was aqueous solution of sodium alginate with 
blue pigment ink) 

 
Figure 7  Printed 3D structure with a hole utilizing the PELID method. 

density of glycerin is changed from 0.0 % to 5.0 %. Fine line 
structure that line width is 120 μm is printed when the density of 
glycerin is 1.0 %. In accord with the results, we print line structure 
in dish that slightly contained with aqueous solution of calcium 
chloride (shown in Fig. 4). The width of printed line structure is 
about 200 μm. Figure 5 shows another sample utilizing the PELID 
method. The cross point of line is relatively wide because of the 
wettability between the printed line and the aqueous solution of 
sodium alginate. Figure 6 shows the printed 3D structure utilizing 
the PELID method. When the multi-nozzle that contained different 

materials were installed and controlled the nozzles to print, com-
plex structures will be printed. In this case, one nozzle is filled 
with aqueous solution of sodium alginate with red pigment ink and 
the other is filled with aqueous solution of sodium alginate with 
blue pigment ink. It is difficult to fabricate 3D structure that has 
cave. Gelatin is used as sacrificial layer. When the printed 3D 
structure is put into hot water, gelatin is removed. With this tech-
nique, we can print 3D structure that has cave. The tube filled with 
the liquid that contained gelatin and the tube filled with the liquid 
that contained aqueous solution of sodium alginate was hanged 
down perpendicular to a dish. Figure 7 shows the printed 3D struc-
ture with a hole. Nutrient is transported in vivo because of blood 
vessel. When there is no blood vessel in 3D cell structure, inside-
located cells will be died because of nutrient-lack. To prevent the 
nutrient-lack in artificially fabricated 3D structure, the 3D struc-
ture should have cave to transport medium with nutrient. The di-
ameter of the cave is controlled from 100 μm to several mm. The 
results indicate that the PELID method has possibility to fabricate 
practical 3D bio structure. 

Conclusions 
       We investigate fundamental characteristics to print calcium 
alginate. After the fundamental investigation, precise lines are 
printed that width is about 100 μm on sheet and about 200 μm in 
dish. With the results, we fabricate soft 3D bio device with cave 
that can transport medium with nutrient. The diameter of the cave 
is controlled from 100 μm to several mm. This result indicates that 
the PELID method has possibility to fabricate practical 3D struc-
ture. 
       This work is supported by A-STEP of JST, Grant-in-Aid for 
Young Scientists (B) of Japan Society for Promotion of Science. 
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