By placing a thin wire near a coated conducting substrate one can generate high electric fields approaching 30 V/μm. These high electric fields can be used to detach toners from a donor roll in a development nip which can subsequently be developed with smaller electric fields from a latent image. Toners typically have large variations in shape, size, and charge, and thus adhesion. A DC voltage on the wire removes only a small proportion of the particles. If alternatively positive and negative voltages are applied to the wire, the particles removed during the attractive part of the pulse are pushed back to the substrate when the voltage flips. The particle impacts loosen up the remaining particles and the next voltage flip removes more particles. By photographing the area under the wire with a digital camera, we can determine the mass removed as a function of distance from the wire. We use this information to monitor the fraction of particles remove as a function of voltage, frequency, number of particles on the substrate and number of pulses in order to extract the physics of the bombardment process. We find that bombardment can completely remove all particles from the substrate, even when a small fraction are initially removed.
Howard Mizes, Jim Beachner, "Particle Removal with High Electric Fields and Repeated Bombardment" in Proc. IS&T Int'l Conf. on Digital Printing Technologies (NIP18), 2002, pp 7 - 11, https://doi.org/10.2352/ISSN.2169-4451.2002.18.1.art00005_1