Regular
annotationsAphantasia
composition
drawingdepthdistant viewing
high dynamic range imaging
image statistics
mid-level vision
psychophysicsperspective
vision and art
 Filters
Month and year
 
  132  26
Image
Pages 1 - 8,  © Society for Imaging Science and Technology 2024
Volume 7
Abstract

Individuals with aphantasia report either absent or dramatically reduced mental imagery compared to control participants. The image of an object or scene produced “in the mind’s eye” lacks detail for these individuals or is simply not there. Line drawings made from memory are a straightforward way to assess the contents of visual imagery for aphantasic individuals relative to controls. Prior analyses of the Aphantasia Drawing Database have revealed specific impairments in visual memory for objects, but relatively spared scene accuracy, suggesting that the encoding of visual scenes in aphantasia is more complex than an overall reduction in imagery might suggest. Here, we examined the mid-level image statistics of line drawings from this database to determine how simpler visual feature distributions differed as a function of aphantasia and reliance on image recall rather than direct observation during image reproduction. We find clear differences across several different sets of mid-level properties as a function of aphantasia, which offers further characterization of the nature of visual encoding in this condition.

Digital Library: JPI
Published Online: June  2024
  12  1
Image
Pages 1 - 6,  © Society for Imaging Science and Technology 2024
Volume 7
Abstract

Pictorial research can rely on computational or human annotations. Computational annotations offer scalability, facilitating so-called distant-viewing studies. On the other hand, human annotations provide insights into individual differences, judgments of subjective nature. In this study, we demonstrate the difference in objective and subjective human annotations in two pictorial research studies: one focusing on Avercamp’s perspective choices and the other on Rembrandt’s compositional choices. In the first experiment, we investigated perspective handling by the Dutch painter Hendrick Avercamp. Using visual annotations of human figures and horizons, we could reconstruct the virtual viewpoint from where Avercamp depicted his landscapes. Results revealed an interesting trend: with increasing age, Avercamp lowered his viewpoint. In the second experiment, we studied the compositional choice that Rembrandt van Rijn made in Syndics of the Drapers’ Guild. Based on imaging studies it is known that Rembrandt doubted where to place the servant, and we let 100 annotators make the same choice. Subjective data was in line with evidence from imaging studies. Aside from having their own merit, the two experiments demonstrate two distinctive ways of performing pictorial research, one that concerns the picture alone (objective) and one that concerns the relation between the picture and the viewer (subjective).

Digital Library: JPI
Published Online: June  2024
  138  37
Image
Pages 1 - 8,  © Society for Imaging Science and Technology 2024
Volume 7
Abstract

Modern production and distribution workflows have allowed for high dynamic range (HDR) imagery to become widespread. It has made a positive impact in the creative industry and improved image quality on consumer devices. Akin to the dynamics of loudness in audio, it is predicted that the increased luminance range allowed by HDR ecosystems could introduce unintended, high-magnitude changes. These luminance changes could occur at program transitions, advertisement insertions, and channel change operations. In this article, we present findings from a psychophysical experiment conducted to evaluate three components of HDR luminance changes: the magnitude of the change, the direction of the change (darker or brighter), and the adaptation time. Results confirm that all three components exert significant influence. We find that increasing either the magnitude of the luminance or the adaptation time results in more discomfort at the unintended transition. We find that transitioning from brighter to darker stimuli has a non-linear relationship with adaptation time, falling off steeply with very short durations.

Digital Library: JPI
Published Online: March  2024

Keywords

[object Object] [object Object] [object Object] [object Object] [object Object] [object Object] [object Object] [object Object]