References
1SimonyanK.ZissermanA.
2SzegedyC.LiuW.JiaY.SermanetP.ReedS.AnguelovD.ErhanD.VanhouckeV.RabinovichA.Going deeper with convolutionsProc. IEEE Conf. on Computer Vision and Pattern Recognition2015IEEEPiscataway, NJ191–910.1109/CVPR.2015.7298594
3ZeilerM. D.FergusR.
4SzegedyC.IoffeS.VanhouckeV.Rethinking the inception architecture for computer visionProc. IEEE Conf. on Computer Vision and Pattern Recognition2016IEEEPiscataway, NJ281828262818–2610.1109/CVPR.2016.308
5HeK.ZhangX.RenS.SunJ.Deep residual learning for image recognitionProc. IEEE Conf. on Computer Vision and Pattern Recognition2016IEEEPiscataway, NJ770778770–810.1109/CVPR.2016.90
6ZhangX.ZhouX.LinM.SunJ.Efficient and accurate approximations of nonlinear convolutional networksProc. IEEE Conf. Computer Vision and Pattern Recognition2018IEEEPiscataway, NJ198419921984–9210.1109/CVPR.2015.7298809
7SunM.LiuZ.WangX.QiaoW.LinK.Efficientnet: Rethinking model scaling for convolutional neural networksInt’l. Con. on Machine Learning2019PMLRStockholm, Sweden610561146105–14
8LinM.ChenQ.YanS.
9HuangG.LiuZ.van der MaatenL.WeinbergerK. Q.Densely connected convolutional networksProc. IEEE Conf. on Computer Vision and Pattern Recognition2017IEEEPiscataway, NJ470047084700–8
10ShenY.HarrisN. C.SkirloS.PrabhuM.Baehr-JonesT.HochbergM.SunX.ZhaoS.LarochelleH.EnglundD.2017Deep learning with coherent nanophotonic circuitsNature Photonics11441446441–610.1038/nphoton.2017.93
11LinX.RivensonY.TengD.WeiL.GünaydınH.ZhangY.OzcanA.2018All-optical machine learning using diffractive deep neural networksScience361100410081004–810.1126/science.aat8084
12HughesT. W.MinkovM.WilliamsonI. A.ShiY.FanS.2018Training of photonic neural networks through in situ backpropagation and gradient measurement: supplementary materialOpticaPart F127
13TaitA. N.NahmiasM. A.ShastriB. J.PrucnalP. R.HarrisJ. S.2017The physics of optical neural networksAppl. Phys. Rev.4021105
14TaitA. N.NahmiasM. A.ShastriB. J.PrucnalP. R.HarrisJ. S.2016Optical implementation of deep networksAppl. Optics55A71A82A71–8210.1364/AO.55.000A71
15MiscuglioM.DambreJ.BienstmanP.2018All-optical nonlinear activation function for photonic neural networks [invited]Opt. Mater. Express8385138633851–6310.1364/OME.8.003851
16LargerL.SorianoM. C.BrunnerD.AppeltantL.GutiérrezJ. M.FischerI.MirassoC. R.2012Photonic information processing beyond turing: an optoelectronic implementation of reservoir computingOpt. Express20324132493241–910.1364/OE.20.003241
17JutamuliaS.YuF. T. S.1996Overview of hybrid optical neural networksOpt. Laser Technol.28859785–9710.1016/0030-3992(95)00070-4
18BoehmK. M.KhosraviP.VanguriR.GaoJ.ShahS. P.2022Harnessing multimodal data integration to advance precision oncologyNature Rev. Cancer22718871–8810.1038/s41568-021-00408-3
19ZhugeM.GaoD.FanD.-P.JinL.ChenB.ZhouH.QiuM.ShaoL.Kaleido-bert: Vision-language pre-training on fashion domainProc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition2021IEEEPiscataway, NJ126421265212642–5210.1109/CVPR46437.2021.01246
20OvchinnikovY. B.MüllerJ.DoeryM.VredenbregtE.HelmersonK.RolstonS.PhillipsW.1999Diffraction of a released bose-einstein condensate by a pulsed standing light wavePhys. Rev. Lett.8328410.1103/PhysRevLett.83.284
21CloughJ. R.ByrneN.OksuzI.ZimmerV. A.SchnabelJ. A.KingA. P.2020A topological loss function for deep-learning based image segmentation using persistent homologyIEEE Trans. Pattern Anal. Mach. Intell.44876687788766–7810.1109/TPAMI.2020.3013679
22LiX.XieL.WangC.MiaoJ.ShenH.ZhangL.2024Boundary-enhanced dual-stream network for semantic segmentation of high-resolution remote sensing imagesGIScience Remote Sens.61235635510.1080/15481603.2024.2356355
23HanS.PoolJ.TranJ.DallyW.Learning both weights and connections for efficient neural networkAdvances in Neural Information Processing Systems2015Curran Associates, Inc.Montréal, Canada113511431135–4310.5555/2969239.2969366
24MolchanovP.TyreeS.KarrasT.AilaT.KautzJ.
25HubaraI.CourbariauxM.SoudryD.El-YanivR.BengioY.
26DentonE. L.ZarembaW.BrunaJ.LecunY.FergusR.
27HintonG.VinyalsO.DeanJ.
28ChenW.WilsonJ.TyreeS.WeinbergerK.ChenY.Compressing neural networks with the hashing trickInt’l. Conf. on Machine Learning2015JMLRLille, France228522942285–9410.5555/3045118.3045361
29ZhengQ.ZhaoP.ZhangD.WangH.2021MR-DCAE: Manifold regularization-based deep convolutional autoencoder for unauthorized broadcasting identificationInt. J. Intell. Syst.36720472387204–3810.1002/int.22586
30ZhengQ.TianX.YuZ.DingY.ElhanashiA.SaponaraS.KpalmaK.2023Mobilerat: A lightweight radio transformer method for automatic modulation classification in drone communication systemsDrones759610.3390/drones7100596
31MehtaS.RastegariM.
32ParkH.SjösundL. L.YooY.BangJ.KwakN.
33ShenX.HertzmannA.JiaJ.ParisS.PriceB.ShechtmanE.SachsI.Automatic portrait segmentation for image stylizationComputer Graphics Forum2016Vol. 35Wiley Online LibraryHoboken, NJ9310293–102
34KrauseJ.DengJ.StarkM.Fei-FeiL.Collecting a large-scale dataset of fine-grained carsProc. 1st IEEE Workshop on Fine-Grained Visual Classification (FGVC) in Conjunction with the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)2013IEEEPiscataway, NJ
35GeigerA.LenzP.UrtasunR.Are we ready for autonomous driving? The KITTI vision benchmark suiteConf. on Computer Vision and Pattern Recognition (CVPR)2012IEEEPiscataway, NJ335433613354–6110.1109/CVPR.2012.6248074
36KirillovA.MintunE.RaviN.MaoH.RollandC.GustafsonL.XiaoT.WhiteheadS.BergA. C.LoW.-Y.DollarP.GirshickR.Segment anythingProc. IEEE/CVF Int’l. Conf. on Computer Vision2023IEEEPiscataway, NJ401540264015–26
37LiuQ.ZhengH.SwartzB. T.AsadZ.KravchenkoI.ValentineJ. G.HuoY.2023Digital modeling on large kernel metamaterial neural networkJ. Imaging Sci. Technol.6710.2352/J.ImagingSci.Technol.2023.67.6.060404
38HowardA. G.