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Abstract. Deep neural networks (DNNs) have heavily relied on
traditional computational units, such as CPUs and GPUs. However,
this conventional approach brings significant computational burden,
latency issues, and high power consumption, limiting their
effectiveness. This has sparked the need for lightweight networks
such as ExtremeC3Net. Meanwhile, there have been notable
advancements in optical computational units, particularly with
metamaterials, offering the exciting prospect of energy-efficient
neural networks operating at the speed of light. Yet, the digital
design of metamaterial neural networks (MNNs) faces precision,
noise, and bandwidth challenges, limiting their application to intuitive
tasks and low-resolution images. In this study, we proposed a
large kernel lightweight segmentation model, ExtremeMETA. Based
on ExtremeC3Net, our proposed model, ExtremeMETA maximized
the ability of the first convolution layer by exploring a larger
convolution kernel and multiple processing paths. With the large
kernel convolution model, we extended the optic neural network
application boundary to the segmentation task. To further lighten
the computation burden of the digital processing part, a set
of model compression methods was applied to improve model
efficiency in the inference stage. The experimental results on three
publicly available datasets demonstrated that the optimized efficient
design improved segmentation performance from 92.45 to 95.97 on
mIoU while reducing computational FLOPs from 461.07 MMacs to
166.03 MMacs. The large kernel lightweight model ExtremeMETA
showcased the hybrid design’s ability on complex tasks.
Keywords: large convolution kernel, model compression, segmen-
tation, meta-material
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1. INTRODUCTION
In the realm of modern computer vision, digital neural
networks play a pivotal role. Arguably, convolutional neural
network (CNN) stands out as the most extensively employed
AI approach, particularly in tasks like image classification,
segmentation, and detection. Traditional CNNs face several
challenges when deployed in resource-constrained environ-
ments, such as those found in IoT devices, edge computing
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systems, and drone operations. These applications demand
real-time performance with minimal power consumption,
low latency, and efficient processing capabilities, which
are difficult to achieve with standard CNN architectures
due to their computational complexity and large memory
requirements. As IoT and edge computing continue to
expand in fields like smart cities, autonomous vehicles,
and drone-based surveillance, it is critical to develop CNN
models that operate effectively in these environments.
Addressing these challenges not only enhances the scalability
and adaptability of CNN-based solutions but also enables
more efficient and reliable system operations in real-time
applications. Despite the advent of vision transformer-based
models, convolution remains integral for extracting local
image features. Presently, CNNs are typically implemented
on computational units like CPUs and GPUs. However, this
conventional design approach brings forth substantial chal-
lenges, including a formidable computational load, notable
latency issues, and heightened power consumption. These
limitations are prominent in drone operations, Internet
of Things (IoT), and edge computing applications, which
emphasize the need for a lightweight model to analyze
efficiently. Recognizing the critical need for DNN models
with reduced energy consumption and lower latency, the
AI community has embarked on a quest for more efficient
solutions.Despite these efforts, achievingDNNs that are light
with low power consumption in the current research trends
is an elusive goal.

Recent breakthroughs in optical computational units,
including metamaterials (refer to Figure 1), have brought to
light the potential for neural networks that operate without
energy consumption and at unprecedented speeds. The
current cutting-edge metamaterial neural network (MNN)
takes on a hybrid form, leveraging optical processors as a
lightspeed and energy-free front-end convolutional operator
alongside a digital feature aggregator. This novel approach
significantly reduces computational latency. By assigning
the convolution operations to optical units, more than 90
percent of the floating- point operations (FLOPs) inherent
in conventional CNN backbones like VGG and ResNet are
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Figure 1. This study provides a hybrid pipeline for designing and optimizing a large kernel digital neural network. The proposed ExtremeMETA is efficient
for segmentation tasks with less FLOPs in computation.

effectively off-loaded. This marks a noteworthy departure
from traditional architectures, opening up new avenues
for efficient and high-performance neural network designs.
However, the hybrid design is fundamentally influenced by
the physical structure including the limited kernel size and
channel number. Moreover, the hybrid system is also limited
by what can be fabricated as the first optical layer of the
neural network.

Based on our proposed LMNN (large kernel metama-
terial neural network) model, the hybrid design achieved
promising performance on the classification task. However,
LMNN has a few limitations, namely: (1) this model can
only perform image classification tasks instead of model
complex tasks like image segmentation and object detection;
(2) input images are in low resolution (28 × 28), and (3)
leverages the computation burden to the optical part, the
digital part requires efficiency improvement operation like
model compression in the inference stage. While the LMNN
reduces computational complexity by offloading much of
the burden to the first layer using a metaoptic lens, it faces
limitations in segmentation and object detection, where
fine-grained spatial understanding is required and the loss
of this capability may be due to the early emphasis on
feature extraction in LMNN. In practical applications, such
as autonomous driving or medical imaging, this limitation
can affect the network’s ability to deliver accurate pixel-level
segmentation or precise object localization.

In this study, we propose a novel large kernel lightweight
segmentation model, ExtremeMETA, which maximizes the
efficiency advantages of optic signal computation, while
compressing the digital processing model to further improve
the model segmentation efficiency. To adapt the segmen-
tation task on large images, the proposed lightweight large
kernel model achieves larger receptive fields, the ability to
analyze larger images, and covers general vision tasks, image

classification segmentation, and detection. Furthermore, the
complexity of the model digital processing part is explicitly
addressed via a set of model compression methods. We
evaluated our design on image segmentation tasks using
three public datasets: the portrait dataset, the Stanford
dataset, and KITTI dataset. The proposed lightweight large
kernel model achieved superior segmentation accuracy as
compared with the state-of-the-art (SOTA) segmentation
model. Overall, the system’s contributions are as follows:

• We propose a new large convolution kernel CNN
network to achieve a large reception field, lower energy
consumption, and less latency.
• We introduce model reparameterization to improve
large convolution kernel performance and sparse con-
volution kernel compression mechanism to compress
the multi-branch sparse-convolution design to a single
layer for the hybrid system implementation. The model
compression mechanism improves the model efficiency
for digital processing.
• The task limitations of large convolution hybrid models
are explicitly addressed via performing segmentation
tasks on multiple datasets from different categories.

The rest of the article is organized as follows. In
Section 2, we present the background and related research
relevant to large kernel convolution,model compression, and
ONNs on image processing tasks. In Section 3, our proposed
lightweight lightspeed model is presented. It includes the
large kernel reparameterization, sparse convolution com-
pression, andmultipathmodel compression. Section 4 details
the dataset and experiment implementation details. Section 5
analyzes the experimental results and ablation study. Then, in
Sections 6 and 7, we provide the discussion and conclude our
work.
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2. RELATEDWORK
2.1 Large Kernel Convolution Design
In the realm of CNNs, the design and utilization of large
kernel convolutions have garnered significant attention in
recent years. Numerous studies have explored the benefits
of using larger convolutional kernels, such as 7 × 7 or
11 × 11, to capture broader spatial contexts and more
intricate patterns within images [1, 2]. Early research efforts
focused on understanding the impact of kernel size onmodel
performance, with findings suggesting that larger kernels
can lead to improved feature extraction and recognition
accuracy, especially for complex visual tasks [3].

Building on these findings, subsequent studies proposed
various strategies to incorporate large kernel convolutions
into CNN architectures effectively. These strategies often
involved modifying network architectures, adjusting kernel
sizes, or integrating multi-scale features to enhance the
robustness and versatility ofCNNmodels [4, 5]. Additionally,
advancements in hardware acceleration and parallel pro-
cessing have facilitated the efficient implementation of large
kernel convolutions, enabling their widespread adoption
across diverse computer vision applications [6, 7].

Overall, the related work on large kernel convolution de-
sign underscores its pivotal role in advancing the capabilities
of CNNs for tackling increasingly complex and demanding
visual recognition tasks [8, 9].

2.2 Optic Neural Network
Optic neural networks (ONNs) have emerged as a promising
paradigm for accelerating neural network computations
by leveraging the unique properties of optical computing.
Inspired by the principles of light-based signal processing,
ONNs exploit the parallelism, high bandwidth, and low
energy consumption inherent in optical systems to achieve
significant computational efficiency gains compared to
traditional electronic implementations. A considerable body
of research has focused on exploring various aspects of
ONNs, including optical device design, system architectures,
and algorithmic frameworks tailored to optical computing
platforms [10–12].

Early studies laid the groundwork for ONNs by demon-
strating their potential for accelerating matrix-vector mul-
tiplications, a fundamental operation in neural network
inference [13, 14]. Subsequent works have extended ONN
capabilities to encompass more complex neural network
layers and architectures, paving the way for practical
applications in tasks such as image classification, object
detection, and natural language processing [15, 16].

Key challenges in ONN research include addressing
optical noise, device nonlinearity, and scalability issues,
which require interdisciplinary efforts spanning optics,
photonics, and machine learning [17, 18]. Despite these
challenges, ONNs hold great promise for enabling ultra-fast
and energy-efficient neural network computations, with
the potential to revolutionize various domains of artificial
intelligence and computing [19, 20].

2.3 Segmentation Model
Recent advancements in segmentation techniques have
introduced novel methods that improve accuracy and
robustness in challenging tasks. For instance, the use of a
topological loss function based on persistent homology has
shown promise in improving the structural integrity of seg-
mentation outputs, particularly in applications where shape
preservation is critical [21]. Additionally, the boundary-
enhanced dual-stream network has demonstrated significant
improvements in semantic segmentation, particularly in
high-resolution remote sensing images where fine boundary
details are crucial [22]. These models offer innovative solu-
tions for specific segmentation challenges, complementing
the growing body of research on improving segmentation
accuracy.Our proposedmodel, ExtremeMETAbuilds on this
foundation by providing a model that is both computation-
ally efficient and highly accurate,making it suitable for awide
range of applications, from general-purpose segmentation to
more domain-specific tasks.

2.4 Convolution Neural Network Model Compression
In the field of CNNs, model compression techniques
have garnered significant attention as a means to reduce
the computational complexity and memory footprint of
deep learning models without sacrificing performance. A
diverse range of methods has been proposed to com-
press CNNs, including pruning, quantization, low-rank
approximation, knowledge distillation, and weight sharing.
Pruning techniques aim to remove redundant or less
important parameters from the network, thereby reducing
its size and computational cost [23, 24]. Quantization
methods reduce the precision of network parameters, often
by representing weights and activations with fewer bits,
to decrease memory requirements and improve inference
speed [25]. Low-rank approximation techniques exploit the
underlying structure of weight matrices to factorize them
into smaller, more computationally efficient components
[26]. Knowledge distillation involves training a compact
‘‘student’’ network to mimic the predictions of a larger
‘‘teacher’’ network, transferring knowledge from the latter
to the former [27]. Additionally, weight sharing approaches
reduce redundancy by sharing parameters across different
parts of the network [28].

Collectively, these model compression techniques of-
fer effective strategies for deploying CNNs on resource-
constrained devices or accelerating inference in large-scale
deployment scenarios. Ongoing research in this area contin-
ues to explore novel compression algorithms, optimization
strategies, and application-specific considerations to further
improve the efficiency and effectiveness of compressed CNN
models.

2.5 Model Efficiency Improvement
Recent studies have focused on improving the efficiency
and performance of models in various signal processing and
communication-related tasks, which closely align with the
objectives of our work. For example, [29] introduced a man-
ifold regularization-based deep convolutional autoencoder
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Figure 2. Lightweight segmentation model with hybrid metaoptics design. The model has two parts: CoarseNet and FineNet. The large kernel block is
composed of depthwise convolution layers.

for unauthorized broadcasting identification, addressing a
critical challenge in signal security and classification. Addi-
tionally, [30] and the multi-scale radio transformer method
have advanced the field of lightweight automatic mod-
ulation classification, particularly in resource-constrained
environments like drone communication systems. Similarly,
[31] demonstrated how lightweight networks can achieve
real-time classification of wireless communication signals,
making them highly applicable for low- power devices. Fur-
thermore, CNN-LSTM-driven methods have been proposed
for real-time transformer discharge pattern recognition,
showcasing the potential of combining CNNs with temporal
models in complex pattern recognition tasks.

3. METHOD
3.1 Problem Statement
We extensively study the trainability of large kernels on
MNNs and unveil three main observations: (i) traditional
convolution kernel shows limited improvement on large
images; (ii) the MNN is only available on classification task;
(iii) metamaterial implementation limited the computation
ratio on segmentation model which is typical in a complex
structure. Model is shown in Figure 2.

3.2 Large Convolution Design with Multiple Path Design
Limited by the image size and the task for the model, our
previous proposed model, LMNN achieved the prediction
performance with kernel size 9× 9. Two major limitations
exist when applying the large kernel design to the MNN:
(1) the metamaterial implementation limits the image
size to a small range; (2) only the classification task is
available to be validated on the MNN model when the
segmentation task and detection task are too difficult to
be implemented under the optic implementation limitation.
To address the challenges, we proposed our model from
two perspectives: (1) from kernel design, we employ the
large convolution kernel with parameterization design to
construct the convolution layer (larger than 9 × 9); (2)
from model design, our proposed lightweight segmentation
model based on the multipath model structure composed
of a course segmentation path and a light refinement path
proposed by [32].

3.3 Model Compression with Sparse Convolution
Model compression is a crucial technique aimed at enhanc-
ing the efficiency of deep learning models by reducing their
size and computational demands while maintaining their
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Figure 3. Model compression on segmentation model digital processing part. The left panel shows the multipath structure of the advanced C3 block. The
right panel shows the compression mechanism.

performance standards. Among various strategies employed
for model compression, pruning, and quantization stand
out as widely adopted methodologies. Pruning, a prominent
model compression technique, involves the systematic re-
moval of redundant or unnecessary parameters from neural
networks. By identifying and eliminating connections that
contribute minimally to the model’s performance, pruning
effectively reduces the model’s size and computational
requirements. This process permits a more streamlined
network architecture without sacrificing accuracy, making it
particularly valuable for resource-constrained environments
or deployment on edge devices.

We applied model compression and parameterization
together for the sparse convolution kernel which is shown
in Figure 3. Sparse convolution refers to a convolution
operation where the kernel (filter) contains mostly zero
values, resulting in a sparse structure. When using a kernel
size of 1 × 3 (1 row and 3 columns), the convolution
operation typically involves sliding this kernel over the input
data and performing element-wise multiplication followed
by summation along the spatial dimensions.

Oh,w,c′ =
2∑

i=0

C−1∑
j=0

Ih,w+i,j×K0,i,j,c′ , (1)

where, I is the input tensor, K is the kernel tensor, O is the
output tensor, and× is the convolution operation.

For the ExtremeC3 block, we have three convolution
paths with kernel size k× k, 1× k, and k× 1. Denoting the
individual kernels as k1×k, kk×k, and kk×1; the compressed
convolution kernel is expressed as follows:

Kcombined(i, j)=w1xk×K1xk(i, j)
+wkxk×Kkxk(i, j)+wkx1×Kkx1(i, j).

(2)

The compressed multipath convolution block saves compu-
tation complexity in the inference stage.

The use of sparse convolution compression in Ex-
tremeMETA significantly improves efficiency by reducing
the number of unnecessary computations, particularly in
non-critical areas of the network. This technique compresses
themodel by introducing sparsity convolution andmultipath
in the convolutional layers, which leads to lower memory
usage and faster inference times. In practical deployment,
especially in resource-constrained environments such as
edge devices or IoT systems, this results in reduced compu-
tational load, lower power consumption, and faster real-time
performance without compromising model accuracy.

4. DATA AND EXPERIMENTAL DESIGN
4.1 Data Description
Three public datasets, EG1800 [33], Stanford Car
dataset [34], and KITTI dataset [35], were used to evaluate

J. Imaging Sci. Technol. 5 July-Aug. 2025



Liu et al.: ExtremeMETA: High-speed lightweight image segmentation model by remodeling multi-channel metamaterial imagers

the lightweight large kernel model on segmentation tasks.
For the EG1800 dataset, we employed 1887 images in
600 × 800 resolution with semantic segmentation masks.
The EG1800 dataset was collected from Flickr with the
manually annotated mask of the portrait. The Stanford Car
dataset is composed of 16,185 RGB images of cars with
the point coordinate of the car’s location in the images. The
KITTI dataset is popular inmobile robotics and autonomous
driving and features diverse traffic scenarios captured using
high-resolution RGB, grayscale stereo cameras, and a 3D
laser scanner. However, it lacks inherent ground truth
annotations for semantic segmentation. To adapt to the
segmentation task, both the Stanford Car dataset and the
KITTI dataset need to address the annotation limitation.

4.2 Data Generation with Foundation Model
Regarding the lack of segmentation annotation in Stanford
Car and KITTI datasets, we employed the Segment Anything
Model (SAM) [36] to generate the object mask based on
the prompts of object location. SAM is a foundation model
that has a zero-shot ability to segment objects on new image
distributions. The RGB image of Stanford Car and KITTI
datasets and bounding box coordinate is provided to SAM,
which generates the object masks. With the help of the SAM,
the RGB images with object mask annotations are available
for model training.

4.3 Large Kernel Digital Design on Segmentation Model
The large kernel design was applied to the segmentation
network’s first convolution layer design. Since the first layer
was designed to be substituted by the metaoptic lens in the
inference stage, our large kernel design was under physical
limitation. On the other hand, the optic lens provided
lightspeed computation which we took advantage of. Based
on themultipath segmentation network, the first convolution
layers of the CoarseNet and FineNet parts were redesigned
with the large convolution kernel with parameterization
following the strategy in our previous work LMNN [37].
Since the image was large compared with FashionMNIST
previously used, our kernel size increased from 9 × 9 to
15× 15. The channel number was expanded from 12 to 48.
The Larger convolution kernel and channel number provided
the capability of the first layers and handled the complex
situation.

4.4 Model Design with Optic Constrain
Constrained by fabrication issues, the metaoptic layer has
limitations on both channel number and input size. The
trade-off in model performance between input size and
channel number is discussed. The size-first design uses
the largest input image size under fabrication constraint.
Channel-first design prefers more channel numbers under
the fabrication limitation.

4.5 Model Compression Efficiency
Besides enlarging the capability of the first layer, our
proposed lightweight segmentation network is compressed
in the digital part. Since compression affects the model’s

Table I. Segmentation performance on EG1800.

Model Kernel 1st Conv Model Digital Test
size FLOPs (%) FLOPs FLOPs (mIoU)

ExtremeC3
3× 3 10.87 199.4 199.4 0.9249
11× 11 62.11 469.14 469.14 0.9323
15× 15 75.30 719.62 719.62 0.9301

Digital N/A N/A 174.10 174.10 0.9086

Ours

1× 1 2.80 182.06 174.10 0.9137
3× 3 10.87 199.40 174.10 0.9234
11× 11 59.68 431.81 174.10 0.9415
15× 15 63.36 475.16 174.10 0.9418

Model FLOPs and digital FLOPs unit is MMacs.

complexity and efficiency, we evaluated if the compressed
model loses accuracy. To test the efficiency of the model
compression strategy, the model FLOPs, parameters, and
FLOPs ratio of the first convolution layer.

5. RESULT
In this section, we evaluate our proposed lightweight
segmentation network with a simple model structure, using
the EG1800 dataset, StanfordCar dataset, andKITTI dataset.
Since the Stanford Car dataset and KITTI dataset are car
images, we train themodel and test the two datasets together.

5.1 Segmentation Performance on Portrait Dataset
We evaluate the lightweight segmentation model on EG1800
dataset together withmodel parameters and first convolution
FLOPs ratio. As shown in Table I, the original ExtremeC3
model cannot take advantage of the large convolution
kernel on the first layer, 15× 15 kernel showed even lower
performance than 11× 11. The model performance without
the first convolution layer showed a 2% drop compared with
the ExtremeC3 model with 3× 3 kernel size. Our proposed
hybrid lightweight segmentation model achieved the best
performance with 15× 15 convolution kernel which had the
same digital computation FLOPs.

Besides improving the model performance with ad-
vanced design on the first convolution layer, we evaluate
the model efficiency improvement by model compression.
Following the experiment setting in Table I, we applied
model compression, including sparse convolution kernel
compression and multipath parameterization, to each model
design and show the efficiency evaluation matrix in Table II.
The compression method showed efficient computation on
digital FLOPs without affecting model performance (mIoU).

In comparison to traditional CNN architectures, Ex-
tremeMETA achieved lower computational complexity by
employing sparse convolution compression and metaoptic
lens techniques, which reduced redundant operations in
early layers. This resulted in faster processing and reduced
memory requirements. However, like most efficient models,
MobileNets [38] and EfficientNet [7], there is a trade-off
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Table II. Segmentation performance on EG1800 after model compression.

Model Kernel 1st Conv Model Digital Test
size FLOPs (%) FLOPs FLOPs (mIoU)

ExtremeC3
3× 3 11.33 191.32 191.32 0.9233
11× 11 63.21 461.07 461.07 0.9315
15× 15 76.16 711.55 711.55 0.9289

Digital N/A N/A 166.03 166.03 0.9031

Ours

1× 1 3.17 174.25 166.03 0.9121
3× 3 11.33 191.32 166.03 0.9217
11× 11 60.81 423.74 166.03 0.9404
15× 15 64.45 467.09 166.03 0.9420

Model FLOPs and digital FLOPs unit is MMacs.

Table III. Segmentation performance on car dataset.

Model Kernel Train Test KITTI Stanford
size (KITTI+Stanford) (mIoU)

ExtremeC3
3*3 95.02 92.51 84.45 95.23
11*11 95.12 92.09 84.37 95.39
15*15 76.09 70.25 22.69 95.22

Digital N/A 93.31 89.11 78.47 94.27

Ours

1*1 94.13 90.94 82.68 93.15
3*3 94.97 92.01 85.05 94.77
11*11 95.79 92.91 85.33 95.97
15*15 96.05 93.17 87.41 95.19

Model FLOPs and digital FLOPs unit is MMacs.

between computational efficiency and segmentation accu-
racy. In practical applications, such as real-time image
segmentation on edge devices, ExtremeMETA demonstrated
improved processing speed and reduced power consumption
while maintaining competitive segmentation accuracy. The
trade-off is most noticeable in tasks requiring extremely
fine-grained segmentation, where traditional CNNs may
offer marginally better accuracy at the cost of significantly
higher computational demands.

5.2 Segmentation Performance on Car Dataset
To validate our lightweight segmentation model with more
datasets, we conducted experiments on the car dataset,
including the Stanford Car dataset and KITTI dataset
with semantic segmentation mask as ground truth. Both
the Stanford Car dataset and the KITTI datasets were
used for model training, even though the resolutions were
different. Using the same experimental setup described in
Table III, we applied model compression and multipath
parameterization to model design, and present the resulting
efficiency evaluation matrix in Table IV.

5.3 Model Robustness
To evaluate the generalization ability of ExtremeMETA, we
conducted experiments on datasets beyond those used for
training, specifically the Portrait and Pet datasets. As shown

Table IV. Segmentation performance on car dataset after model compression.

Model Kernel 1st Conv (%) Model Digital Test
size FLOPs (%) FLOPs FLOPs (mIoU)

ExtremeC3
3*3 11.33 191.32 191.32 91.36
11*11 63.21 461.07 461.07 92.45
15*15 76.16 711.55 711.55 70.01

Digital N/A N/A 166.03 166.03 88.97

Ours

1*1 3.17 174.25 166.03 90.94
3*3 11.33 191.32 166.03 94.25
11*11 60.81 423.74 166.03 95.32
15*15 64.45 467.09 166.03 93.05

Model FLOPs and digital FLOPs unit is MMacs.

Table V. Comparison of model performance on Portrait and Pet datasets.

Model Portrait (mIoU) Pet (mIoU)

YOLO 92.67 70.48
Ours 91.84 73.87

in Table V, ExtremeMETA achieved an mIoU of 91.8439
on the Portrait dataset and 73.8717 on the Pet dataset,
significantly outperforming YOLO on both. These results
demonstrate that ExtremeMETA generalizes well across
different types of images, even in tasks that involve varying
levels of complexity, such as fine-grained segmentation in
the Pet dataset. The model’s architecture, including sparse
convolution compression and metaoptic lens techniques,
allows it to adapt to different domains with minimal loss
in performance, making it a versatile solution for various
practical applications.

To provide a visual comparison of the segmentation
results, we present qualitative examples from the Portrait and
Pet datasets in Figure 4. The figure shows the original images,
the segmentation outputs generated by ExtremeMETA,
and the corresponding ground truth. As demonstrated,
ExtremeMETA accurately segmented both human portraits
and animal shapes, closelymatching the ground truth in each
case. These visual results further validate the effectiveness of
ExtremeMETA in diverse segmentation tasks, showing that it
can generalize well across different image types andmaintain
high segmentation accuracy.

5.4 Ablation Studies
Due to the fabrication limitation of the metalens array, the
priority of channel number and input image size need to be
fixed. The results of the experiment are shown in Figure 5.
The left panel illustrates how increasing the input image size
enhances performance compared to expanding the number
of channels in a convolution layer. The gray area depicts
the performance disparity expressed as mIoU. Increasing
the input image size enhances the model’s ability to capture
finer spatial details, which improves performance in tasks
like semantic segmentation. However, it also increases
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Figure 4. Segmentation results on the Portrait and Pet datasets. The first column shows the original images, the second column presents the segmentation
results from ExtremeMETA, and the third column displays the ground truth. The results show that ExtremeMETA effectively captured the boundaries and
shapes of objects with high accuracy.

Figure 5. Model ablation study. Left panel: trade-off between input image size and channel number of convolution layer. Right panel: model efficiency
visualization comparing model FLOPs and mIoU.

computational cost. Expanding the number of channels,
while boosting the model’s capacity to extract complex
features, raises the risk of overfitting and computational load.
The gray area in the left panel highlights that, in this case,
increasing the input size led to a greater improvement in
mIoU than expanding the number of channels, indicating
that capturing spatial details was more impactful for
performance. On the right panel, the effectiveness of utilizing
large convolution kernels is shown. Circles of various colors
represent different convolution layer architectures, with the
area of each circle indicating the ratio of FLOPs for the layer
when implemented using metaoptic materials. The x-axis
represents the model’s FLOPs, excluding the layer intended
for fabrication.

5.5 Model Compression
Figure 6 demonstrates that the compressed model achieves
a reduction of 8 MMacs in FLOPs, decreasing from 174.10

MMacs to 166.03 MMacs. The right panel indicates that the
compressed model maintains equivalent performance to the
original model. This consistency in performance establishes
that ExtremeMETA not only enhances the efficiency of
the digital components but also contributes to the overall
optimization of the hybrid system.

6. DISCUSSION
Given the demonstrated superior performance of large
convolution kernels in tasks such as image classification
and segmentation, there exists substantial potential for their
application in a wider array of complex computer vision
tasks. Large convolution kernels have shown remarkable
effectiveness in tasks like image classification and segmenta-
tion, primarily due to their ability to capture more extensive
spatial information and intricate patterns within images.
This success suggests that employing large convolution
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Figure 6. Model compression performance. Left panel: origin model, ExtremeMETA, and compressed model parameters comparison; right panel: model
performance after compression.

kernels in other computer vision tasks could yield significant
improvements.

One such task is object detection, where accurately
identifying and localizing objects within images is crucial.
By utilizing large convolution kernels, the model can better
discern the detailed features of objects, leading to more
precise detection results. This can be particularly beneficial
in scenarios with small or occluded objects, where finer
details are essential for accurate recognition as the results
shown in the experiments on the car dataset.

Furthermore, in tasks involving image generation or
synthesis, such as style transfer or super- resolution, large
convolution kernels can enhance the model’s ability to
capture intricate textures and details, resulting in more
realistic and high-fidelity output images. These kernels can
effectively extract and preserve fine-grained features, which
are instrumental in faithfully replicating the characteristics
of the input images.

The application can be extended to video processing
tasks such as action recognition or video segmentation,
where large convolution kernels can enhance the model’s
capability to analyze temporal and spatial dependencies
across frames. By incorporating information from a broader
context, these kernels enable a more robust understanding of
dynamic scenes, leading to improved performance in tasks
requiring temporal coherence and contextual understanding.

The adoption of large convolution kernels holds promise
for advancing various complex computer vision tasks beyond
traditional image classification and segmentation. Their
ability to capture intricate details and spatial relationships
makes them a valuable tool for enhancing the performance
and capabilities of computer vision models across diverse
applications.

7. CONCLUSION
In this study, we presented a novel large kernel lightweight
segmentationmodel that harnesses the efficiency advantages
of optical signal computation while integrating digital
processing model compression techniques to further en-
hance segmentation efficiency. Our model offers larger
receptive fields tailored for segmentation tasks on large
images, extending its applicability to various vision tasks
including image classification, segmentation, and detection.
Through extensive evaluations on diverse datasets, including
the portrait, Stanford, and KITTI datasets, our proposed
approach has demonstrated superior segmentation accuracy
compared to state-of-the-art models. Our contributions en-
compass the introduction of a novel large convolution kernel
CNN network for larger reception fields, reduced energy
consumption, and lower latency, alongside the introduction
of model reparameterization and sparse convolution kernel
compression mechanisms to enhance model performance
and efficiency in digital processing. By explicitly addressing
task limitations and conducting segmentation tasks on mul-
tiple datasets from different categories, our work represents
a significant step forward in the development of efficient and
effective segmentation models for a wide range of computer
vision applications.

Summary of Contributions: Our work offers key ad-
vancements in computer vision by addressing the compu-
tational and practical challenges in deploying CNN-based
models in real-world scenarios. We introduced an archi-
tecture that not only improves segmentation accuracy but
also reduces computational complexity, making it highly
suitable for resource-constrained environments such as
IoT devices and edge computing. The proposed model
compression techniques further contribute to lower energy
consumption and faster processing times, highlighting the
potential for widespread adoption across various industries,
from autonomous systems to medical imaging. Our findings
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push the boundaries of segmentation model efficiency and
performance, paving the way for future innovations in
various fields.
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