References
1BashiriM.VatankhahH.GhidaryS. S.2011Hybrid adaptive differential evolution for mobile robot localizationJ. Intel. Serv. Robotics59910799–10710.1007/s11370-012-0106-2
2ParhiD. R.KunduS.2017Navigation control of underwater robot using dynamic differential evolution approachProc IMechE Part M: J Engineering for the Maritime Environment231284301284–301
3KimJ.ParkC.KweonI. S.2011Vision-based navigation with efficient scene recognitionJ. Intel. Serv. Robotics4191202191–20210.1007/s11370-011-0091-x
4NiuL.SmirnovS.MattilaJ.GotchevA.RuizE.Robust pose estimation with a stereoscopic camera in harsh environmentsProc. IS&T Electronic Imaging: Intelligent Robotics and Industrial Applications using Computer Vision 20182018IS&TSpringfield126-1126-6126-1–610.2352/ISSN.2470-1173.2018.09.IRIACV-126
5AlatiseM. B.HanckeG. P.2020A review on challenges of autonomous mobile robot and sensor fusion methodsIEEE Access8398303984639830–4610.1109/ACCESS.2020.2975643
6ZhangX.WangW.QiX.LiaoZ.WeiR.2019Point-plane SLAM using supposed planes for indoor environmentsSensors19379510.3390/s19173795
7PlacedJ. A.CastellanosJ. A.2020A deep reinforcement learning approach for active SLAMAppl. Sci.10838610.3390/app10238386
8FermullerC.ShulmanD.PlessR.2001The statistics of optical flowComput. Vis. Image Underst.821321–3210.1006/cviu.2000.0900
9SimoncelliE. P.AdelsonE. H.HeegerD. J.Probability distributions of optical flowIEEE Conf. on Computer Vision and Pattern Recognition1991IEEEPiscataway, NJ10.1109/CVPR.1991.139707
10DaniilidisK.SpetsakisM.AloimonosY.Understanding noise sensitivity in structure from motionVisual Navigation1996Psychology PressEast Sussex618861–88
11HeegerD. J.1988Optical flow using spatiotemporal filtersInt. J. Comput. Vis.1279302279–30210.1007/BF00133568
12ZhangT.TomasiC.2002On the consistency of instantaneous rigid motion estimationInt. J. Comput. Vis.46517951–7910.1023/A:1013248231976
13BrussA.HornB.1983Passive navigationComput. Graph. Image Process.213203–2010.1016/S0734-189X(83)80026-7
14ZhuangX.HuangT.AhujaN.HaralickR.1988A simplified linear optic flow-motion algorithmComput. Vis. Graph. Image Process.42334344334–4410.1016/S0734-189X(88)80043-4
15JepsonA. D.HeegerD. J.HarrisL.JenkinsM.Linear subspace methods for recovering translation directionSpatial Vision in Humans and Robots1993Cambridge University PressCambridge396239–62
16ZangwillW.Nonlinear Programming: A Unified Approach1969Prentice-HallEnglewood Cliffs
17LuenbergerD. G.Linear and Nonlinear Programming1989Addison WesleyBoston
18MahamudS.HebertM.OmoriY.McHenryK.PonceJ.Provably-convergent iterative methods for projective structure from motionIEEE Int’l. Conf. Computer Vision & Pattern Recognition2001IEEEPiscataway, NJ101810251018–2510.1109/CVPR.2001.990642
19GwakS.KimJ.ParkF. C.2003Numerical optimization on the Euclidean group with applications to camera calibrationIEEE Trans. Robot. Autom.19657465–7410.1109/TRA.2002.807530
20SchaibleS.ShiJ.2003Fractional programming: the sum-of-ratios case Optimization Methods Softw.18219229219–2910.1080/1055678031000105242
21SoattoS.BrockettR.2000Optimal structure from motion: Local ambiguities and global estimatesInt. J. Comput. Vis.39195228195–22810.1023/A:1026563712076