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Abstract. For translationally moving objects with fixed cameras,
such as robots and cars, blurring can often be more pronounced
in objects that are closer to the camera. A depth-normalized,
least-squares objective function is proposed for the simultaneous
recovery of shape and motion parameters from optical flow, together
with an efficient iterative optimization algorithm. Simulation and
experiments demonstrate that for scenes with sufficient depth
variation, our algorithm provides robust, statistically consistent
estimates of shape and motion. c© 2023 Society for Imaging
Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2023.67.6.060403]

1. INTRODUCTION
Motion and depth estimation using vision sensors, otherwise
known classically as the structure from motion problem
(SFM), is an essential component of mobile robot localiza-
tion, mapmaking, and navigation. While the SFM problem
is well-understood and generally considered to be solved,
mobile robots are often equipped with off-the-shelf low
performance sensors – particularly with the proliferation
of low-cost mobile robots for the mass market – and
operate in unstructured environments under uneven lighting
conditions which makes the problem to be solved based on
statistical principles such as Kalman filter orMarkovmethod
[1, 2], and this makes the estimation problem still relevant
and challenging [3–7].

In the classical structure from motion (SFM) literature,
it is now well recognized that noise in the image velocities,
together with the presence of just a few outliers, can
significantly degrade the estimates of depth and motion.
Fermuller et al. [8] and Simoncelli et al. [9] have investigated
the probabilistic and statistical characteristics of optical flow
measurements, while Daniilidis and Spetsakis [10] offer a
comprehensive framework addressing various sources of
error in motion estimation (e.g., statistical bias, correlated
noise, geometric instabilities).

One factor contributing to this noise sensitivity is that
most existing SFM algorithms treat the entire set of optical
flow measurements uniformly, regardless of the distance
from the camera, or whether the translation or rotation
component of the motion is more dominant. In typical
video scenes taken in urban settings, for example, it is
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quite common for objects to be moving at a wide range
of camera depths. In the case of translational motions, the
magnitude of optical flow is inversely proportional to depth,
and blurring which is caused by camera exposure is often
more pronounced for objects that are closer to the camera,
while the optical flow measurements of extremely distant
points tend to be dominated by noise. It would thus seem
reasonable to rely more on optical flow measurements that
are sufficiently distant from the camera to minimize the
effects of blurring, while ensuring an appropriate signal-to-
noise ratio. A closely related idea is that of Heeger [11],
who formulated image flow uncertainty in such a way that
it increases with flow magnitude.

This paper presents a depth-normalized criterion for
simultaneously recovering velocity and depth information
from optical flow data, together with an efficient iterative
algorithm for its optimization. Intended for scenarios where
near points are subject to greater blurring, our objective
function normalizes the data such that the optical flow
measurements from distant points are given proportionally
greater weight. We present an efficient cyclic coordinate
descent algorithm for obtaining the shape and motion
estimates. Finally, extensive simulation and experimental
studies are conducted to assess the performance of our
algorithm, and results show that, for scenes with sufficient
depth variation, our algorithm leads to more robust and
accurate shape and motion estimators.

2. PROBLEM FORMULATION
2.1 Camera Model &Measurements
We assume a standard perspective projection model for a
camera with unit focal length. The image velocity of the
camera motion in this case becomes

u(p)= λ(p)A(p)v+B(p)ω+n(p), (1)

where u(p)= (ux(p), uy(p))T is the two-dimensional image
velocity vector at image position p = (px , py ,1)T , v =
(vx , vy , vz )T is the camera’s translational velocity, ω =
(ωx ,ωy , ωz )

T is its angular velocity, and the scalar λ(p)
is the inverse scene depth at image point p. The term
n(p)= (nx(p),ny(p))T denotes noise, and

A(p)=

[
1 0 −px
0 1 −py

]
, (2)
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B(p)=

[
−pxpy 1+p2

x −py
−(1+p2

y) pxpy px

]
. (3)

Given a collection of n optical flow measurements
{(p1, u1), . . . , (pn, un)}, the objective is to estimate the
translational and angular velocities v and ω, and the inverse
depths λ1, . . . , λn associated with each of the image points
p1, . . . , pn in some optimal fashion. It is well known that
since λ(p) and v appear as a product in Eq. (1), it is not
possible to determine their magnitudes; we therefore adopt
the standard practice of assuming ‖v‖ = 1.

Zhang and Tomasi [11] have shown that nonisotropic
noise models for optical flow can lead to statistically
inconsistent motion parameter estimates, in the sense of
infinite-sample unbiasedness and finite-sample convergence
- intuitively, the estimates fail to improve in accuracy with
more optical flow measurements. Their study also highlights
the sometimes fatal consequences caused by inappropriate
transformations of the original SFM problem formulation,
particularly those based on epipolar geometry. Epipolar
methods have the advantage of decoupling the depth and
motion estimation problems; by algebraically eliminating
depth from the objective function via the epipolar constraint,
the dimension of the ensuing optimization problem is
significantly reduced. The depth parameters can moreover
be recovered by a simple postprocessing procedure involving
a singular value decomposition. One study [12] emphasized
that the motion-depth decoupling achieved in the various
epipolar methods are due to transformations of the fun-
damental SFM problem and also cited several examples of
popular epipolar geometry-based SFM estimators that fail to
be statistically consistent e.g.,[13–15].

Zhang and Tomasi [12] further show that under the
assumption that the errors of the optical flow measurements
are independent, identically distributed, and isotropic (in the
sense of being rotationally symmetric), the estimator given
by

argminω,v
∑
i=1

inf
λi
‖Ai([ω] pi+λiv)−ui‖q, (4)

where ω ∈ R3, v ∈ S3 (‖v‖ = 1), q ≥ 1 and ‖·‖ denotes
the Euclidean two-norm, is statistically consistent (Their
objective function is presented in slightly more general form
than the one given here). An efficient iterativeGauss-Newton
algorithm is also derived.

2.2 Depth Normalized Objective Function
Figure 1 illustrates the image blurring that can occur in
typical dynamic urban scenes; this image was taken from a
moving car at 1/50 shutter speed. The direction of camera
movement is perpendicular to optical axis, and magnitude
of motion field is inversely proportional to depth of object
scene. During camera exposure, the image is blurred by
the motion field which is induced by camera translation.
Images captured from sensor always contain thismotion blur
because camera exposure time is finite and larger than zero.

Figure 1. Blurring and optical flow noise with respect to camera depth
value.

In the case ofmobile robot whichmoves in linear translation,
the accuracy of visual navigation is affected by this motion
blur in each frame because it uses consecutive camera frames
to estimate motion and depth information.

To compensate for this particular type of blurring
phenomena, we propose a modified version of the objective
function (4) that weights the optical flow measurements
according to depth:

J (ω, v, λ)=
n∑

i=1

1
λ2
i
‖Ai([ω] pi+λiv)−ui‖2. (5)

Informally, the inverse depth scaling has the effect
of ‘‘undoing’’ the perspective projection before considering
the noise. To ensure that the flow measurements are of
sufficient signal-to-noise ratio, in practical implementations,
one would discard measurements that are beyond a certain
threshold depth; these and other practical issues are dis-
cussed in detail later.

3. SOLUTION
As is common in the SFM literature, we focus on the case
v 6=0 because the v = 0 case can be easily detected and treated
separately. The optimal λ can be determined parametrically
as a function of ω and v from the first-order necessary
conditions for optimality, i.e., by setting gradient equals to
zero. This leads to

λk =
‖uk−B(pk)ω‖2

(uk−B(pk)ω)TA(pk)v
(6)

Given values for ω and v, the λ that minimizes the cost
function (5) is given by the above. By substituting λ(ω, v)
above back into (5), the cost function becomes, after some
manipulation,

J (ω, v)=
n∑

i=1

∥∥∥∥(I− (ui−B(pi)ω)(ui−B(pi)ω)T
‖ui−B(pi)ω‖2

)
A(pi)v

∥∥∥∥2

.

(7)
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We use the following notation:

Qi(ω)=A(pi)−
(ui−B(pi)ω)(ui−B(pi)ω)T

‖ui−B(pi)ω‖2
A(pi),

Q(ω)=


Q1(ω)
...

Qn(ω)

 .
Note that Qi(ω) ∈R

3×3 and Q(ω) ∈R2n×3. The objective
function can now be written as

J (ω, v)= ‖Q(ω)v‖2. (8)

If ω is given, using a Lagrange multiplier argument,
one can show that the optimal v is given by the unit-length
eigenvector ofQTQ corresponding to the smallest eigenvalue
where the cost function is symmetric with respect to v, in
the sense that both v and −v lead to identical values of the
objective function.

Instead of attempting to simultaneously minimize the
cost function with respect to ω and v, we minimize
sequentially over the two parameters as follows:

• Let k= 0 and choose any initial value ωk ∈R
3;

• Iterate the following:

* vk = unit-length eigenvector of QTQ correspond-
ing to the minimal eigenvalue;

* ωk+1 = argminJ (ω, vk)
ω∈R3

, where vk is obtained from

the previous step;
* k= k+1.

Under various compactness and uniqueness assump-
tions one can show via the global convergence theorem (see
[16, 17]) that the above cyclic coordinate descent (CCD)
algorithm is assured of converging to meaningful local
minima. We do not address the details here but refer the
reader to [18, 19] and the previous references for applications
of the global convergence theorem in vision settings, and a
discussion of the subtleties.

We now examine in more detail the conditional
problem of minimizing J (ω, v) given v ∈ S2; we denote this
conditional objective function by J (ω|v). Defining

bi(ω)= ui−B(pi)ω, (9)

J (ω|v) can be written after some manipulation as

J (ω|v)=
n∑

i=1

(
‖A(pi)v‖2−

bTi A(pi)vv
TAT (pi)bi

‖bi‖2

)
.

Ignoring the ‖A(pi)v‖2 term (since v is assumed given),
and defining

Ri(v)=A(pi)vvTAT (pi), (10)

we have the following sum-of-ratios quadratic fractional
programming problem:

min
ω∈R3

J (ω|v)=−
n∑

i=1

bTi Ribi
bTi bi

. (11)

Each Ri is symmetric, positive semidefinite, and of rank
one. The analytic gradient of J (ω|v) is useful for numerical
optimization purposes:

∂J (ω|v)
∂ω

=

n∑
i=1

(
uTi RiB(pi)−ω

TBT (pi)B(pi)
‖bi‖2

−
bTi Ribi
‖bi‖4

(uTi B(pi)−ωB
T (pi)B(pi))

)
. (12)

With this gradient, any number of standard optimization
algorithms and specialized algorithms for fractional pro-
gramming are at our disposal [20].

4. EXPERIMENTAL RESULTS
4.1 Synthetic Data
Experiments with synthetic data have been performed with
our proposed algorithm, and the results are compared
with the algorithms of Zhang and Tomasi [12] and Soatto
and Brockett [21]; the latter developed a cyclic descent
optimization algorithm for a standard epipolar geometry-
based motion estimation criterion. 50 feature points are
randomly generated from a uniform distribution in a
three-dimensional 120 × 120 × 120 region. These points
are assumed to belong to a single rigid body moving with
translational velocity (1, 3, 2) and angular velocity (−1,
0.5, 1.5). Corresponding optical flow measurements are ob-
tained via perspective projection. Independent uncorrelated
Gaussian noise is then added to the measurements after
scaling the noise by depth. In our simulations noise levels are
successively increased up to 50% of the average optical flow
magnitudes.

Spherical velocity errors are measured according to

d(vact , vest )= cos−1(vact ,vest ), (13)

where vact ∈ S2 denotes the actual velocity, and vest ∈ S2

denotes the estimated value obtained from the optimization.
Physically, this metric corresponds to the angle between vact
and vest ; that this definition satisfies the distance metric
axioms can be straightforwardly verified. Linear velocity
errors are measured in the standard way in terms of the
Euclidean two-norm. In the optimization procedure we use
the stopping criterion

|Jk+1(ω, v)−Jk(ω,v)|
|Jk(ω,v)|

< ε, (14)

where ε is on the order of 10−6.
We first examined whether increasing the number of

feature points increases the accuracy of the linear and an-
gular velocity estimates produced by our depth-normalized
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Figure 2. (a) Estimation error bias and (b) standard deviation versus
number of feature points.

criterion. Adding depth-scaled zero-mean Gaussian noise
with 0.1 standard deviation to the optical flow measure-
ments, we examined both the error and standard deviation
of the linear and angular velocity estimates as a function of
the number of feature points. The feature points are increased
from 1,000 to 10,000 in increments of 1000. Figure 2 shows
the results of our algorithm for synthetic data, averaged over
50 sample trials; the top graph illustrates the estimation
error bias, while the bottom shows the standard deviation,
both as a function of the number of feature points. Our
results are also compared with those obtained using the
Zhang-Tomasi (Z–T ) and Soatto-Brockett (S–B) algorithms.
All three algorithms display a distinct trend of decreasing
bias and variance with increasing number of feature points;
however, our depth-normalized criterion shows the most
rapid decrease.

We then examined the noise sensitivity of our depth-
normalized algorithm. 30 feature points are used, and
noise levels are successively increased up to 50% of the

Figure 3. (a) Linear and (b) angular velocity errors as a function of noise
level.

Table I. Computation times for the three algorithms.

Proposed Z –T S–B

Time (s) 0.73 0.70 0.49
Iterations 7.2 5.8 4.8

average optical flow magnitudes (corresponding to absolute
values of around 0.2). Figure 3 illustrates the linear and
angular velocity estimation errors and standard deviation as
a function of increasing noise levels. The errors are again
obtained as the average of 50 trials, with the ranges indicating
plus-minus one standard deviation. The errors can be seen
to increase in approximately linear fashion as noise levels are
increased.

Table I lists the average computation times for the
three algorithms. All the algorithms were implemented in
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Figure 4. Experimental results for scene 1.

the Microsoft Visual C++. Feature point detection and
optical flow calculation were performed using the appro-
priate OpenCV routines, and the nonlinear optimization
routines from IMSL’s PC version were used for numerical
optimization, in conjunction with an internally developed
matrix computation library (RMatrix).

Not surprisingly, our proposed algorithm was the
slowest, followed closely by the Z–T algorithm. Since
the above two algorithms explicitly solve for the depth
parameters in the optimization, this result is not unexpected.
The Z–T algorithm, which eliminates the depth parameters
altogether via the epipolar constraint, was the fastest of the
three algorithms.

4.2 Real Images
We then evaluated our algorithm on a series of scenes that
are captured from a Point Grey Flea camera mounted on a
Pioneer PeopleBot; this camerawas used to vary the exposure
time and iris so as to produce a range of blurring effects.
The scene depicted in Figures 4, 5 contains objects at depths
of up to 30 m. We deliberately obtained motion sequences
at slow shutter speeds to capture the blurring effect and
raise noise levels. Optical flow measurements were obtained
using theOpenCVpyramidal implementation of the iterative
Lucas-Kanademethod; the feature points were also extracted
using the OpenCV library.

The camera underwent a linear translation directly
toward the objects along the robot and the optical flow
measurements are shown in the upper-right figure. One
can observe the relatively large number of incorrect optical

flow vectors for the proximal object; the errors for the
proximal object are more pronounced than for distal objects.
Comparing the optical flow fields estimated using our
proposed algorithm with that obtained from the Z–T
algorithm, our algorithm shows better performance; the
directional errors present in the measured flow field are
largely corrected using our depth-normalized criterion.

5. CONCLUSION
One factor contributing to the noise sensitivity of existing
SFM algorithms is that the optical flow measurements
of all points, regardless of their depth, are treated with
the same degree of fidelity. This paper has proposed a
depth-normalized criterion that places a greater weight on
the optical flow measurements at increased depths. The
underlying premise is that for mobile robots and cars with
fixed cameras that are traveling linearly in typical scenes,
particularly in urban environments, blurring (and thus more
noise) is often more pronounced in objects that are closer
to the camera. We derived an efficient cyclic optimization
algorithm for estimating the velocity and depth parameters.
Experimentswith both synthetic data and real images suggest
that for scenes with sufficient depth variation, and in which
translational motions are dominant, our depth-normalized
criterion leads to improved estimates of the velocity and
depth. The proposed motion estimation method is not
superior in terms of computational efficiency because the
depth value is obtained during the optimization process,
while other reference algorithms calculate it explicitly.
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Figure 5. Experimental results for scene 2.

Future work should explore more computationally efficient
motion estimation algorithms using the proposed depth
normalization criterion. We are also working to improve the
current implementation of the proposed method, including
removing dependencies on internally developed libraries.
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