References
1ShawG.ManolakisD.2002Signal processing for hyperspectral image exploitationIEEE Signal Process. Mag.19121612–610.1109/79.974715
2TanL.HouM.-l.2016A study on the application of SAM classification algorithm in seal of calligraphy and painting based on hyperspectral technology2016 4th Int’l. Workshop on Earth Observation and Remote Sensing Applications (EORSA)415418415–8IEEEPiscataway, NJ10.1109/EORSA.2016.7552841
3BalasC.EpitropouG.TsaprasA.HadjinicolaouN.2018Hyperspectral imaging and spectral classification for pigment identification and mapping in paintings by el greco and his workshopMultimedia Tools Appl.77973797519737–5110.1007/s11042-017-5564-2
4TripathiM. K.GovilH.2019Evaluation of AVIRIS-NG hyperspectral images for mineral identification and mappingHeliyon5e0293110.1016/j.heliyon.2019.e02931
5MelganiF.BruzzoneL.2004Classification of hyperspectral remote sensing images with support vector machinesIEEE Trans. Geosci. Remote Sens.42177817901778–9010.1109/TGRS.2004.831865
6LiuN.GuoY.JiangH.YiW.2020Gastric cancer diagnosis using hyperspectral imaging with principal component analysis and spectral angle mapperJ. Biomed. Opt.2506600510.1117/1.JBO.25.6.066005
7ZhiL.ZhangD.YanJ.-q.LiQ.-L.TangQ.-l.2007Classification of hyperspectral medical tongue images for tongue diagnosisComput. Med. Imaging Graph.31672678672–810.1016/j.compmedimag.2007.07.008
8ParkB.WindhamW. R.LawrenceK. C.SmithD. P.2007Contaminant classification of poultry hyperspectral imagery using a spectral angle mapper algorithmBiosyst. Eng.96323333323–3310.1016/j.biosystemseng.2006.11.012
9DevassyB. M.GeorgeS.2020Contactless classification of strawberry using hyperspectral imagingCEUR Workshop Proc.CEUR-WS.orgAachen
10ParkB.WindhamW. R.LawrenceK. C.SmithD. P.2007Contaminant classification of poultry hyperspectral imagery using a spectral angle mapper algorithmBiosyst. Eng.96323333323–3310.1016/j.biosystemseng.2006.11.012
11DeepthiD.DevassyB. M.GeorgeS.NussbaumP.ThomasT.2022Classification of forensic hyperspectral paper data using hybrid spectral similarity algorithmsJ. Chemom.36e338710.1002/cem.3387
12van der WeerdJ.van LoonA.BoonJ. J.2005Ftir studies of the effects of pigments on the aging of oilStud. Conserv.503223–2210.1179/sic.2005.50.1.3
13CosentinoA.2014Fors spectral database of historical pigments in different bindersE-conserv. J.2576857–6810.18236/econs2.201410
14CavaleriT.GiovagnoliA.NervoM.2013Pigments and mixtures identification by visible reflectance spectroscopyProcedia Chem.8455445–5410.1016/j.proche.2013.03.007
15SaundersD.KirbyJ.2004The effect of relative humidity on artists’ pigmentsNatl. Gallery Tech. Bull.25627262–72
16LyuS.YangX.PanN.HouM.WuW.PengM.ZhaoX.2020Spectral heat aging model to estimate the age of seals on painting and calligraphyJ. Cult. Herit.46119130119–3010.1016/j.culher.2020.08.005
17MassJ. L.OpilaR.BuckleyB.CotteM.ChurchJ.MehtaA.2013The photodegradation of cadmium yellow paints in henri matisse’s le bonheur de vivre (1905–1906)Appl. Phys. A111596859–6810.1007/s00339-012-7418-0
18CuttleC.1996Damage to museum objects due to light exposureInt. J. Ligh. Res. Technol.28191–910.1177/14771535960280010301
19SimonotL.EliasM.2003Color change due to surface state modificationColor Res. Appl.28454945–910.1002/col.10113
20ShindeP. P.ShahS.2018A review of machine learning and deep learning applications2018 Fourth Int’l. Conf. on Computing Communication Control and Automation (ICCUBEA)161–6IEEEPiscataway, NJ10.1109/ICCUBEA.2018.8697857
21CaiL.GaoJ.ZhaoD.2020A review of the application of deep learning in medical image classification and segmentationAnn. Transl. Med.871310.21037/atm.2020.02.44
22ZhiL.ZhangD.YanJ.-q.LiQ.-L.TangQ.-l.2007Classification of hyperspectral medical tongue images for tongue diagnosisComput. Med. Imaging Graph.31672678672–810.1016/j.compmedimag.2007.07.008
23ShivakumarB. R.RajashekararadhyaS. V.2017Performance evaluation of spectral angle mapper and spectral correlation mapper classifiers over multiple remote sensor data2017 Second Int’l. Conf. on Electrical, Computer and Communication Technologies (ICECCT)161–6IEEEPiscataway, NJ10.1109/ICECCT.2017.8117946
24de CarvalhoO. A.MenesesP. R.2000Spectral correlation mapper (SCM): an improvement on the spectral angle mapper (SAM)Summaries of the 9th JPL Airborne Earth Science Workshop, JPL Publication 00-18Vol. 9JPL Publication PasadenaCA
25QinJ.BurksT. F.RitenourM. A.BonnW. G.2009Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergenceJ. Food Eng.93183191183–9110.1016/j.jfoodeng.2009.01.014
26DevassyB. M.GeorgeS.HardebergJ. Y.2019Comparison of ink classification capabilities of classic hyperspectral similarity features2019 Int’l. Conf. on Document Analysis and Recognition Workshops (ICDARW)Vol. 8253025–30IEEEPiscataway, NJ10.1109/ICDARW.2019.70137
27MalilaW. A.1980Change vector analysis: An approach for detecting forest changes with landsatLARS Symposia326335326–35IEEEPiscataway, NJ
28ChenJ.GongP.HeC.PuR.ShiP.2003Land-use/land-cover change detection using improved change-vector analysisPhotogramm. Eng. Remote Sens.69369379369–7910.14358/PERS.69.4.369
29de Carvalho JúniorO.GuimarãesR.GillespieA.SilvaN.GomesR.2011A new approach to change vector analysis using distance and similarity measuresRemote Sens.3247324932473–9310.3390/rs3112473
30DuY.ChangC.-I.RenH.ChangC.-C.JensenJ. O.D’AmicoF. M.2004New hyperspectral discrimination measure for spectral characterizationOpt. Eng.43177717861777–8610.1117/1.1805563
31KumarM. N.SeshasaiM. V. R.PrasadK. S. V.KamalaV.RamanaK. V.DwivediR. S.RoyP. S.2011A new hybrid spectral similarity measure for discrimination among vigna speciesInt. J. Remote Sens.32404140534041–5310.1080/01431161.2010.484431
32ZhangM.QinZ.LiuX.UstinS. L.2003Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensingInt. J. Appl. Earth Obs. Geoinf.4295310295–31010.1016/S0303-2434(03)00008-4
33LiH.LeeW. S.WangK.EhsaniR.YangC.2014Extended spectral angle mapping (ESAM)’ for citrus greening disease detection using airborne hyperspectral imagingPrecis. Agric.15162183162–8310.1007/s11119-013-9325-6
34DabboorM.HowellS.ShokrM.YackelJ.
35UllahS.GroenT. A.SchlerfM.SkidmoreA. K.NieuwenhuisW.VaiphasaC.2012Using a genetic algorithm as an optimal band selector in the mid and thermal infrared (2.5–14 μm) to discriminate vegetation speciesSensors12875587698755–6910.3390/s120708755
36VenkataramanS.BjerkeH.CopenhaverK.GlaserJ.2006Optimal band selection of hyperspectral data for transgenic corn identificationMAPPS/ASPRS 2006 Fall Conf.6106–10ASPRSBaton Rouge, LA
37BruzzoneL.RoliF.SerpicoS. B.1995An extension of the Jeffreys-Matusita distance to multiclass cases for feature selectionIEEE Trans. Geosci. Remote Sens.33131813211318–2110.1109/36.477187
38DeborahH.RichardN.HardebergJ. Y.2014On the quality evaluation of spectral image processing algorithms2014 Tenth Int’l. Conf. on Signal-Image Technology and Internet-Based Systems133140133–40IEEEPiscataway, NJ10.1109/SITIS.2014.50
39RomeroJ.Garcia-BeltránA.Hernández-AndrésJ.1997Linear bases for representation of natural and artificial illuminantsJ. Opt. Soc. Am. A14100710141007–1410.1364/JOSAA.14.001007
40DeborahH.RichardN.HardebergJ.2015A comprehensive evaluation of spectral distance functions and metrics for hyperspectral image processingIEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.8322432343224–3410.1109/JSTARS.2015.2403257
41
42HeroldM.GardnerM. E.RobertsD. A.2003Spectral resolution requirements for mapping urban areasIEEE Trans. Geosci. Remote Sens.41190719191907–1910.1109/TGRS.2003.815238
43MiaoX.GongP.SwopeS.PuR.CarruthersR.
44MewesT.FrankeJ.MenzG.2011Spectral requirements on airborne hyperspectral remote sensing data for wheat disease detectionPrecis. Agric.12795812795–81210.1007/s11119-011-9222-9
45GualtieriJ. A.ChettriS.2000Support vector machines for classification of hyperspectral dataIGARSS 2000. IEEE 2000 Int’l. Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proc. (Cat. No. 00CH37120)Vol. 2813815813–5IEEEPiscataway, NJ10.1109/IGARSS.2000.861712
46PouyetE.MitevaT.RohaniN.de ViguerieL.2021Artificial intelligence for pigment classification task in the short-wave infrared rangeSensors21615010.3390/s21186150
47SweetJ. N.2003The spectral similarity scale and its application to the classification of hyperspectral remote sensing dataIEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003929992–9IEEEPiscataway, NJ10.1109/WARSD.2003.1295179
48KruseF. A.LefkoffA. B.BoardmanJ. W.HeidebrechtK. B.ShapiroA. T.BarloonP. J.GoetzA. F. H.1993The spectral image processing system (sips)—interactive visualization and analysis of imaging spectrometer dataRemote Sens. Environ.44145163145–6310.1016/0034-4257(93)90013-N
49MandalD. J.GeorgeS.PedersenM.BoustC.2021Influence of acquisition parameters on pigment classification using hyperspectral imagingJ. Imaging Sci. Technol.2021334346334–4610.2352/J.ImagingSci.Technol.2021.65.5.050406
50AdepR. N.VijayanA. P.ShettyA.RameshH.2016Performance evaluation of hyperspectral classification algorithms on AVIRIS mineral dataPerspectives Sci.8722726722–610.1016/j.pisc.2016.06.070
51ChangC.-I.1999Spectral information divergence for hyperspectral image analysisIEEE 1999 Int’l. Geoscience and Remote Sensing Symposium. IGARSS’99 (Cat. No.99CH36293)Vol. 1509511509–11IEEEPiscataway, NJ10.1109/IGARSS.1999.773549
52DeborahH.GeorgeS.HardebergJ. Y.2014Pigment mapping of the scream (1893) based on hyperspectral imagingInt’l. Conf. on Image and Signal Processing247256247–56SpringerCham10.1007/978-3-319-07998-1_28
53ZhangE.ZhangX.YangS.WangS.2013Improving hyperspectral image classification using spectral information divergenceIEEE Geosci. Remote Sens. Lett.11249253249–5310.1109/LGRS.2013.2255097
54GranahanJ. C.SweetJ. N.2001An evaluation of atmospheric correction techniques using the spectral similarity scaleIGARSS 2001. Scanning the Present and Resolving the Future. Proc. IEEE 2001 Int’l. Geoscience and Remote Sensing Symposium (Cat. No. 01CH37217)Vol. 5202220242022–4IEEEPiscataway, NJ10.1109/IGARSS.2001.977890
55KrauzL.PátaP.KaiserJ.2022Assessing the spectral characteristics of dye-and pigment-based inkjet prints by VNIR hyperspectral imagingSensors2260310.3390/s22020603
56PadmaS.SanjeeviS.2014Jeffries-Matusita-Spectral Angle Mapper (JM-SAM) spectral matching for species level mapping at Bhitarkanika, Muthupet and Pichavaram mangrovesInt. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.40140314111403–1110.5194/isprsarchives-XL-8-1403-2014
57GualtieriJ. A.ChettriS.2000Support vector machines for classification of hyperspectral dataIGARSS 2000. IEEE 2000 Int’l. Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proc. (Cat. No. 00CH37120)Vol. 2813815813–5IEEEPiscataway, NJ10.1109/IGARSS.2000.861712
58HamzaM. A.AlzahraniJ. S.Al-RasheedA.AlshahraniR.AlamgeerM.MotwakelA.YaseenI.EldesoukiM. I.2022Optimal and fully connected deep neural networks based classification model for unmanned aerial vehicle using hyperspectral remote sensing imagesCan. J. Remote Sens.48681693681–9310.1080/07038992.2022.2116566
59RieseF.KellerS.2019Soil texture classification with 1D convolutional neural networks based on hyperspectral dataISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci.IV-2/W5615621615–2110.5194/isprs-annals-IV-2-W5-615-2019
60ChangC.-I.2000An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysisIEEE Trans. Inf. Theory46192719321927–3210.1109/18.857802
61SweetJ.GranahanJ.SharpM.2000An objective standard for hyperspectral image qualityProc. AVIRIS WorkshopJPLPasadena, CA
62KerekesJ. P.CiszA. P.SimmonsR. E.2005A comparative evaluation of spectral quality metrics for hyperspectral imageryProc. SPIE 5806469480469–8010.1117/12.605916
63ZhangJ.ZhangY.ZhouT.2001Classification of hyperspectral data using support vector machineProc. 2001 Int’l. Conf. on Image Processing (Cat. No. 01CH37205)Vol. 1882885882–5IEEEPiscataway, NJ10.1109/ICIP.2001.959187
64MelganiF.BruzzoneL.2004Classification of hyperspectral remote sensing images with support vector machinesIEEE Trans. Geosci. Remote Sens.42177817901778–9010.1109/TGRS.2004.831865
65DingS.ChenL.2009Classification of hyperspectral remote sensing images with support vector machines and particle swarm optimization2009 Int’l. Conf. on Information Engineering and Computer Science151–5IEEEPiscataway, NJ10.1109/ICIECS.2009.5363456
66JabbarH.KhanR. Z.2015Methods to avoid over-fitting and under-fitting in supervised machine learning (comparative study)Comput. Sci. Commun. Instrum. Devices70
67BauD.ZhuJ.-Y.StrobeltH.LapedrizaA.ZhouB.TorralbaA.2020Understanding the role of individual units in a deep neural networkProc. Natl. Acad. Sci.117300713007830071–810.1073/pnas.1907375117
68SchwingA. G.UrtasunR.
69RonnebergerO.FischerP.BroxT.2015U-net: Convolutional networks for biomedical image segmentationInt’l. Conf. on Medical Image Computing and Computer-assisted Intervention234241234–41SpringerCham10.1007/978-3-319-24574-4_28
70YuS.JiaS.XuC.2017Convolutional neural networks for hyperspectral image classificationNeurocomputing219889888–9810.1016/j.neucom.2016.09.010
71HongD.GaoL.YaoJ.ZhangB.PlazaA.ChanussotJ.2021Graph convolutional networks for hyperspectral image classificationIEEE Trans. Geosci. Remote Sens.59596659785966–7810.1109/TGRS.2020.3015157
72HuW.HuangY.LiW.ZhangF.LiH.2015Deep convolutional neural networks for hyperspectral image classificationJ. Sensors20151121–1210.1155/2015/258619
73
74
75
76
77FungT.LeDrewE.1987Application of principal components analysis to change detectionPhotogramm. Eng. Remote Sens.53164916581649–58
78SzandałaT.2021Review comparison of commonly used activation functions for deep neural networksBio-inspired Neurocomputing203224203–24SpringerCham10.1007/978-981-15-5495-7_11
79KingmaD. P.BaJ.
80YaqubM.FengJ.ZiaM. S.ArshidK.JiaK.RehmanZ. U.MehmoodA.2020State-of-the-art CNN optimizer for brain tumor segmentation in magnetic resonance imagesBrain Sci.1042710.3390/brainsci10070427
81O’MalleyT.BurszteinE.LongJ.CholletF.JinH.InvernizziL.