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Abstract. Hyperspectral imaging techniques are widely used in
cultural heritage for documentation and material analysis. Pigment
classification of an artwork is an essential task. Several algorithms
have been used for hyperspectral data classification, and the
effectiveness of each algorithm depends on the application domain.
However, very few have been applied for pigment classification
tasks in the cultural heritage domain. Most of these algorithms work
effectively for spectral shape differences and might not perform
well for spectra with differences in magnitude or for spectra that
are nearly similar in shape but might belong to two different
pigments. In this work, we evaluate the performance of different
supervised-based algorithms and few machine learning models for
the pigment classification of a mockup using hyperspectral imaging.
The result obtained shows the importance of choosing appropriate
algorithms for pigment classification. c© 2023 Society for Imaging
Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2023.67.3.030403]

1. INTRODUCTION
Hyperspectral Imaging (HSI) technology, initially developed
and used for remote sensing applications, is also being used
more frequently in the Cultural Heritage (CH) domain for
analyzing artwork and has provided great potential in its
scientific analysis. In CH, proper pigment classification of
artworkmaterials such as paintings is of essential importance
for conservators to precisely analyze an object and its
historical value. Generally, reflection, transmission, and
absorption of electromagnetic energy by a given material
produce a unique spectrum at a given wavelength. The
shape of the spectrum is distinctive because every material
has a different chemical composition and an inherent
physical structure [1]. For pigment classification using HSI,
supervised classification algorithms are mainly used; they
compare the spectrum within a region of interest with
spectral library spectra with a specific tolerance [2, 3].

Many supervised-based classification algorithms ex-
ist for HSI, mostly in remote sensing applications, for
example, mineral identification [4, 5]. However, few of
these algorithms are being adopted directly or with some
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modification in other application domains such as medical
imaging [6, 7], food and agriculture [8–10], forensics [11].
Moreover, to the best of our knowledge, only a few have
been implemented in the CH domain, especially for pigment
classification of artwork such as paintings. HSI acquisition
for CH are usually performed under controlled laboratory
conditions, where the distance between the camera and
the object is relatively small and one has control over
illumination types and geometry. In contrast, for remote
sensing, HSI data are collected using natural illumination
with a more considerable distance between the camera
and target, causing temporal illumination variations and
atmospheric effects. Due to these differences between
two application domains, various classification algorithms
adopted in remote sensing cannot be directly adapted or
might not work effectively for CH applications. For example,
an algorithm insensitive to intensity variation can perform
well in remote sensing. However, it might not perform
with the same accuracy for CH objects because magnitude
measures are essential in CH. Faded or aged pigments [12],
pure pigments mixed with different binding mediums [13],
mixed pigments (e.g., pigments mixed in different weight
percentages of lead white [14]), etc. can have variations
in magnitude, which is essential to determine for both
diagnostic and conservative purposes. Very few of these
algorithms have been used for pigment identification of
artwork using HSI, and therefore it is necessary to explore
and evaluate them. Furthermore, many materials associated
with CH lack pure end members, particularly when they
undergo weathering [15], aging [16–18], or restoration
processes over time [19]. Therefore, accurately determining
the composition of a specific material or differentiating it
from other materials within an image can pose challenges,
making the task of identifying andmapping materials in HSI
more challenging.

Deep learning has recently provided new possibilities by
solving more complex questions in many applications [20,
21]. In CH, spectra of the pigments get affected with
different types ofmediumused as binders; spectramight look
identical, i.e. might have a small shift in peak or small change
in magnitude [13], and under such conditions, most of the
supervised algorithms do not perform well for classification.
However, distinguishing such conditionsmight be important
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for art historians and conservators to select the proper
conservation methods. Also, in the case of fading, there
might only be a minor change in the magnitude of a
spectrum. In medical imaging, Zhi et al. [22] used a Support
Vector Machine (SVM) for tongue diagnosis using HSI,
where spectra obtained from the surface of the tongue under
different conditions have changed mainly in magnitude.
Devassy et al. [9] used a One-dimensional Convolutional
Neural Network (1D-CNN) to classify strawberries and
found that the result was better than supervised algorithms.
To the best of our knowledge, using deep learning-based
models for pigment classification of artwork is not a common
practice and, therefore, it will be worthwhile to explore their
potential.

This paper presents the comparative experimental
analysis of various supervised algorithms and machine
learning models for pigment classification on a mockup
using HSI in the Visible Near-Infrared (VNIR) region. The
algorithms used are the Spectral Angle Mapper (SAM),
Spectral Correlation Mapper (SCM), Spectral Information
Divergence (SID), Spectral Similarity Scale (SSS), and the
hybrid combinations of SID–SAM and SID–SCM. We also
used the Jeffries-Matusita (JM) distance function combined
with SAM (JM-SAM). Likewise, few of the machine learning
models used are SVM, Fully Connected Neural Network
(FC-NN), and 1D-CNN. The rest of this paper is structured
as follows. Section 2 provides an overview of data processing
techniques and algorithms, followed by details about the
algorithms used in Section 3. Object details, imaging
technology, and the experimental framework used are given
in Section 4. Section 5 covers the results with a discussion.
Finally, Section 6 presents our conclusions, followed by future
work.

2. OVERVIEWOF ALGORITHMS AND PROCESSING
TECHNIQUES

Generally, a spectral matching technique is employed for
pigment classification, i.e., finding a spectral similarity
between two spectra at any given pixel in an image. The
best fit indicates the most significant possibility of being
reference material for a given pixel. The distinction between
different algorithms used for classification is their ability
to consider shapes and magnitude differences between two
spectra. This section provides an overview of the classifi-
cation algorithms employed in various application domains
with HSI.

Shivakumar et al. [23] compared the performance of
SAM and SCM for classifying nine different classes in
remote sensing applications using HSI. There was spectral
overlapping between the datasets for some of the classes, and
they identified that SCM was more efficient compared to
SAM for the classes with a highly similar spectrum. Similarly,
SCM was compared with SAM for mineral analysis [24]
and it was found that SCM algorithm delivered better
results due to its wide variation of data from −1 to 1. Qin
et al. [25] used SID methods to identify lesions in citrus
using HSI. Devassy et al. [26] explored the performance of

five different algorithms, namely SAM, SCM, ED, SID, and
Binary Encoding (BE), for the task of ink classification using
HSI. The overall accuracy (average of all inks used) for the
SAM algorithm was high compared to all other methods
used. None of the methods worked effectively to classify
between inks that had nearly similar spectral signatures with
only change in magnitude.

For a given two vectors (spectra), Change Vector
Analysis (CVA) computes the change in spectral vectors
and compares their magnitude with the specified threshold
value [27]. It was originally designed for only two spectral
dimensions (2 spectral bands), however, using the directional
cosine approach, it can be extended to a N -dimensional
space [28] and is computed using Eq. (1).

αi = cos−1

 ti− ri√∑nb
i=1(ti− ri)2

 , (1)

where ti and ri are the tests and reference image, and nb
is the total number of bands with i = 1, 2, . . . , nb. In this
method, we will obtain the number of angles αi equal to the
number of bands, which makes the computation complex,
details on this explanation and its drawbacks are explained
in Ref. [29]. Osmar et al. [29] in their study of change
detection methods in a tropical environment using HSI,
proposed a new approach to calculate the spectral direction
of change using the SAM and the SCM method, and for
magnitude, they computed theMahalanobis distance and the
Euclidean distance. The best result was obtained using SAM
for similarity and ED for magnitude.

Many hybrid approaches to compute the classification of
HSI data have shown improved results in many applications.
Using a hybrid approach of SAM and SID was found to
produce better results than using them alone [30]. Naresh
et al. [31] computed the hybrid of SCM and SID (SID-SCM)
for the classification of vigna species and compared their
result with the hybrid method of SAM and SID. They
performed an experiment for various spectral regions and
found that for region 400–700 nm, results are better.
Zhang et al. [32] used the hybrid approach by combining
Minimum Noise Fraction (MNF) and SAM methods to
identify defective tomatoes.

Li et al. [33] proposed a new method called Extended
Spectral Angle Mapper (ESAM) for detecting disease in
citrus plants for multi- and hyperspectral datasets. The
result was compared with supervised methods, Mahalanobis
distance, and unsupervised method; k-means and ESAM
were found to have better accuracy (86%) than the other
two methods (around 64%). Jeffries-Matusita (JM) [34] are
mainly used for the separability criterion and optimal band
selection, so only the most distinct bands are selected for the
data classification task [35, 36]. The JMmethod is a pairwise
distance measure that can be applied mostly to two class
cases. Authors have proposed many extensions of JM [37]
for use in multiclass classification. The most common is
to take the average JM distance computed for all pairs of
classes. Deborah et al. [38] evaluated the performance of four
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different distance functions named Root Mean Square Error
(RMSE), Goodness-of-Fit Coefficient (GFC) [39], Jeffrey
divergence, and Levenshtein distance on both synthetic and
real hyperspectral datasets to find a suitable distancemeasure
for spectral image processing. They found that for the
magnitude change, only RMSE followed by Jeffrey divergence
performed in the desired way.

Deborah et al. [40] compared different distance func-
tions for pigment classification tasks on HSI datasets with
the presence of spectral noise and variations. Intending to
identify the appropriate methods based on suitable selection
criteria, they found the Euclidean distance of a Cumulative
Spectrum (ECS) to be the most suitable distance function
for spectral data. However, in their study, evaluation of
these distance functions on artificially simulated spectra and
some real spectra from pigment patches from the Kremer
pigment chart [41], these charts are screen printed and
usually the pigments are in a water-based binder, which
might not be the exact representation of the real spectra
obtained from an artwork. Bhattacharyya Distance (BD)
measures the separability between two classes and has been
used in remote sensing applications frequently [42, 43].
BD was used to select the number of bands required for
efficient classification, and then SAM and SVM were used
for identification of stress symptoms in plants [44].

In recent years, machine learning-based classification
methods have been popular and extensively used in many
different applications. SVM is one of the machine learning
approaches used for classification tasks and has shown
efficient results, especially when the training data size is
relatively small [5, 45]. Deep learning-based CNN models
can learn spectral features more effectively using deeper
layers and in many cases, such methods can give us higher
classification accuracy than traditional algorithms. Pouyet
et al. [46] used the Deep Neural Network (DNN) and
compared the result with SAM for pigment identification
and mapping using HSI in the SWIR region and found
that the DNN model produced better results than SAM.
Devassy et al. [9], in their study of strawberry classification
based on sugar content, found that algorithms SID and
SAM, which rely on the spectrum’s geometry, did not
perform well, as the two reference spectrum were nearly
identical in shape and a small difference in the magnitude
of the NIR region of the spectrum. They also showed that
1D-CNN based classification gives better accuracy (96%)
compared to SAM (60%) and SID (58%). Table I summarizes
the list of algorithms used for HSI data processing, their
area of study, and details of the classification/network
parameters.

3. CLASSIFICATION ALGORITHMS
In this section, we describe the algorithms used in our
experiment.

3.1 Euclidean Distance (ED)
Classification can be computed by calculating the minimum
distance between the spectrum to be classified and the

reference spectrum of the class. For a given n-dimensional
image spectrum ti and a reference spectrum ri, the ED
between them is defined using Eq. (2), where nb is the
number of spectral bands. ED is proportional to the
magnitude of the squared subtractive difference vector, but
not its shape [47].

ED=

√√√√ nb∑
i=1

(ti− ri)2 (2)

3.2 Spectral Angle Mapper (SAM)
SAM is one of the most popular spectral classification
methods used in CH applications due to its easy and rapid
approach to mapping spectral similarity. SAM, developed
by Boardman [48], measures the spectral similarity between
any two spectra (test and reference). Arccosine angles
between the two spectra are calculated by treating them as
N -dimensional vectors in space, where N is equal to the
number of spectral bands. The angle between two spectra
is calculated using Eq. (3), where α is the spectral angle in
radians, ti is the image spectrum, ri is the reference spectrum,
and nb is the total number of bands. A smaller angle indicates
a more decisive match between the spectra. Kruse et al. [48]
describe a simplified representation of the spectral angle
mapper algorithm using a two-dimensional scatter plot for
two band image data. Since the SAM algorithm measures an
angle between two vectors and the angle does not change
with the length of the vectors, i.e., insensitive to the gain.
Therefore, this algorithm does not consider magnitude shifts
in the spectrum (see Osmar et al. [24]).

α = cos−1

 ∑nb
i=1 tiri√∑nb

i=1 ti2
√∑nb

i=1 ri2

 (3)

3.3 Spectral Correlation Mapper (SCM)
SCM calculates the Pearson correlation coefficient between
two spectra. It standardizes the data, centralizing itself in
the mean of the test and reference spectra. By applying
arccosine, it can be expressed in angles. This algorithm
excludes negative correlation and retains shading effect
minimization characteristics similar to SAM, resulting in
better classification results [24, 29]. SCM can be computed
using Eq. (4), where α is the arccosine of the spectral
correlation measure in radians, ti and t̄i are the image
spectrum and its sample mean, similarly ri and r̄i are the
reference spectrum and its sample mean, and nb is the total
number of bands.

α = cos−1

 ∑nb
i=1(ti− t̄i)(ri− r̄i)√∑nb

i=1(ti− t̄i)2
∑nb

i=1(ri− r̄i)2

 . (4)

3.4 Spectral Information Divergence (SID)
SID measures spectral similarity between the spectrum of
test and reference data for each pixel based on the concept of
divergence, i.e. measuring probabilistic discrepancy between
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Table I. Summary of algorithms used for HSI datasets with its applications and model parameters; Th: threshold value, BS: batch size, LR: learning rate, DR: dropout rate, ReLu: rectified
linear unit, HL: hidden layer, CL: convolutional layer, FCL: fully connected layer, KS: kernel size.

Algorithms Application Wavelength Parameters

ED Ink classification [26] 400–1000 nm —

SAM Pigment classification [49] 400–1000 nm Th:0.1
Mineral classification [50] 380–2500 nm —
Ink classification [26] 400–1000 nm —
Minerals and land classification [51] — —

SCM Ink classification [26] 400–1000 nm —
Pigment identification [3] 370–1100 nm —
Pigment mapping [52] 400–2500 nm Th:0.1

SID Mineral classification [50] 380–2500 nm —
Ink classification [26] 400–1000 nm —
Minerals and land classification [51] — —
Crops classification [53] 200–2400 nm —

SSS Crops classification [54] — —

SIDSAM Crop classification [30] 400–2500 nm —
Mineral classification [50] 380–2500 nm —
Dye and pigment based Inkjet prints [55] 400–1000 nm —

SIDSCM Plant classification [31] 350–2500 nm —
Mineral classification [50] 380–2500 nm —

JMSAM Landcover classification [56] — —
Mineral classification [50] 380–2500 nm —
Ink classification [26] 400–1000 nm —
Dye and pigment based Inkjet prints [55] 400–2500 nm —

SVM Tongue diagnosis [22] 400–1000 nm —
Crops classification [57] — Polynomial Kernel

FC-NN Aerial images classification [58] —
BS:500, LR: 0.05,
DR:0.25, ReLU

Pigment classification [46] 1000–2500 nm
HL: 4, LR : 0.001,

Adam, ReLU/Sigmoid

1D-CNN Soil texture classification [59] 400–1000 nm
CL:4, FCL:2,
Softmax

Classification of strawberry [9] 380–2500 nm
Filters: 8, HL: 2,
BS:32, KS: 3

them. The probability distribution of the test and reference
spectra is expressed as Eq. (5) and Eq. (6), respectively [60].

pi =
ti∑nb
i=1 ti

(5)

qi =
ri∑nb
i=1 ri

, (6)

where, ti is the image spectrum, ri is the reference spectrum,
and nb is the total number of bands. Using these two

probability distributions, SID can be calculated with Eq. (7).

SID=
nb∑
i=1

pi log
(
pi
qi

)
+

nb∑
i=1

qi log
(
qi
pi

)
(7)

3.5 Spectral Similarity Scale (SSS)
SSS evaluates the shape and magnitude difference between
two spectra. Granahan et al. [54, 61] used SSS to ana-
lyze hyperspectral atmospheric correction techniques. This
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algorithm uses the Euclidean distance metric for magnitude,
and correlation for comparing the shape of the spectra.
This method combines the calculations of both, giving each
an equal weighting [62]. SSS has a scale ranging from a
minimum of zero and maximum of the square root of two;
smaller the value, the higher the similarity between the
spectrum i.e. if two spectrum are collinear then its SSS value
will be equal to zero. SSS can be computed using Eq. (8).

SSS=
√
(de)2+ (r̂)2 (8)

Here, de is the Euclidean distance between two spectra
and is computed using Eq. (9) and its value ranges from 0 to
1 due to the factor 1/nb.

de =

√√√√ 1
nb

nb∑
i=1

(ti− ri)2 (9)

Equation (10) computes the value for r̂ , where r is
the correlation coefficient between the two spectra and is
computed using Eq. (11).

r̂ = (1− r2) (10)

r2
=

 ∑nb
i=1(ti− t̄i)(ri− r̄i)√∑nb

i=1(ti− t̄i)2
∑nb

i=1(ri− r̄i)2

2

(11)

3.6 SID-SAM
As the name suggests, SIDSAM is computed by multiplying
SID by taking the tangent of SAMorwith the sine function of
SAM, i.e., by computing the perpendicular distance between
two vectors (test and reference). Both of these measures
produce similar results [30]. This hybrid computationmakes
two similar spectra evenmore comparable and twodissimilar
spectra more distinctive, thus significantly improving the
spectral discriminability. SIDSAM can be computed as either
of the Eqs. (12) or (13), where SID and SAMcan be computed
using Eqs. (7) and (3) respectively.

SID− SAM= SID ∗ tan(SAM) (12)
SID− SAM= SID ∗ sin(SAM) (13)

3.7 SID-SCM
Similar to SID-SAM, we also tested the hybrid combination
of SIDSCM, computed by multiplying SID by either taking
a tangent of SCM or with the sine function of SCM [31].
SID-SCM can be computed as either of Eqs. (14) or (15),
where SID and SCM can be computed using Eqs. (7) and (4)
respectively.

SID− SCM= SID ∗ tan(SCM) (14)
SID− SCM= SID ∗ sin(SCM) (15)

3.8 Jeffries-Matusita Spectral Angle Mapper (JM-SAM)
Similarly to SID-SAM, JM-SAM is also a hybrid similarity
measure algorithm in which the spectral capabilities of both
algorithms are orthogonally projected by using either a

tangent or a sine function [56]. A smaller JM-SAM value
indicates a strong match between the reference and test
spectra. It can be computed using either Eqs. (16) or (17).

JM− SAM= JMD ∗ tan(SAM) (16)
JM− SAM= JMD ∗ sin(SAM) (17)

Here, Jeffries-Matusita distance (JMD) is one of the spectral
separability measures commonly used in remote sensing
applications and can be computed using Eq. (18), where B
is the Bhattacharyya distance and is computed using Eq. (19)
and SAM is computed using Eq. (3).

JMD= 2(1− e−B) (18)

B=
1
8
(µt −µr )

T
[
σt + σr

2

]−1

(µt −µr )

+
1
2

ln

[
|
σt+σr

2 |
√
|σt ||σr |

]
(19)

Here, µt and µr are the mean of the test and reference
spectra, respectively; σt and σr are the covariance of the test
and reference spectra, respectively.

3.9 Support Vector Machine (SVM)
SVM is a supervised classification algorithmused inmachine
learning and has been used successfully for HSI classification
tasks [63–65]. These are usually used to separate two ormore
data classes using a hyperplane. Objects to be classified are
represented as a vector in ann-dimensional space. Then SVM
method draws a hyperplane so that all points of one class are
on one side of this hyperplane and points of the other class
are on the other side. Of course, there could be multiple such
hyperplanes. SVM tries to find the one that best separates
these classes by computing the maximum distance between
the data points of these classes closest to the hyperplane, also
called support vectors. This method is similar to the Neural
Network, but instead of computing the weight and bases of
each point, SVM adjusts these parameters by computing it
only on the support vectors and determining the decision
boundaries for classification.

3.10 Fully Connected Neural Network (FC-NN)
In the FC-NN architecture, all the nodes in one layer are
connected to the nodes in the next layer. The data are
inputted into the first layer of the neural network, where
individual neurons pass the data to a second layer. The
second layer of neurons does its task, and so on, until
the final layer. Each neuron assigns a weight to its input.
Once all the input weights flow out of the neuron, they are
summed, and biases are added, which help offset the output.
These parameters are tuned by optimization during training,
that is, compute the error of classification, also called loss,
and then tune the weights and biases over many iterations
to minimize this loss. The goal of neural networks is to
adjust their weights and biases so that they can produce
the desired output when applied to new unseen data. One
of the common problems when training the network is
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Figure 1. The architecture of a typical CNN consisting of a convolutional
layer, a max pooling layer, and a fully connected layer.

overfitting (also called generalization error) of the dataset,
i.e., Instead of learning, itmemorizes the data. To avoid it, one
needs to use regularization, i.e., early stopping with dropout
layers and changing the network structure and parameters
(weight constraint) [66]. A dropout function added to the
network helps to disable the neurons randomly. This forces
the network to learn how to make accurate predictions with
only randomly left neurons, helping the network to prevent
overfitting. For further details, see [67, 68].

3.11 One-dimensional Convolutional Neural Network
(1D-CNN)
CNN is one of the most popular neural networks used for
various computer vision and machine learning tasks [69–
71]. CNN architecture is built using three main layers:
convolutional layer, pooling layer, and fully connected layer.
As the name suggests, the convolutional layer performs
the linear operation between matrices, that is, convolution

between the input neurons and kernel, generating an output
activation map. For 1D-CNN, only 1D convolution is
performed, that is, scalar multiplications and additions. In
this layer, the number of weights is equal to the size of
the kernel and does not depend on the input neuron, as
in FC-NN. The feature map generated from this layer is
passed through pooling a layer which helps to reduce the
dimension of the feature map while maintaining the most
important information. This helps to introduce translation
invariance and reduces overfitting. A fully connected layer
takes the output of the pooling layers, flattens them, and
turns them into one long vector that can be an input for
the next stage, where it applies weights to predict the correct
label, and finally outputs the probabilities for each class using
the activation function. Figure 1 shows the architecture of a
general CNN [72].

4. MATERIALS ANDMETHODS
In this section, we describe the mockup and the HSI
acquisition laboratory setup, details on the data post-
processing steps, and classification algorithms.

4.1 Test Object
As shown in Figure 2, a pigment mockup was prepared
and used in a laboratory environment. We used pigment
tubes composed of high-stability pigments and oil, purchased
from Zecchi [73]. The pigments were selected on the basis
of the popularity in CH research articles, their spectrum
characteristics, and in consultation with experts. Veridian
(V), Cerulean Blue (CB), Green Earth (GE), Yellow Ochre
Light (YOL), Burnt Umber (BU), Ultramarine Blue Deep
(UBD), Lead White Hue (LWH), Genuine Vermilion (GV),
Cobalt Blue Deep (CBD), and Ivory Black (IB) are the
pigments that are being used in themockup. The linen canvas
used was primed using three layers of white gesso.

4.2 Experimental Setup
Hyperspectral data were obtained in a laboratory environ-
ment using the HySpex line scanner VNIR-1800 from Norsk
Electro Optikk [74]. The datacube obtained covers a spectral

Figure 2. Pigment mockup; P1: Veridian, P2: Cerulean Blue, P3: Green Earth, P4: Yellow Ochre Light, P5: Burnt Umber, P6: Ultramarine Blue Deep, P7:
Lead White Hue, P8: Genuine Vermilion, P9: Cobalt Blue Deep and P10: Ivory Black.
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Figure 3. Workflow diagram for data processing.

range from 400 to 1000 nm with 186 spectral bands having
a spectral resolution of 3.26 nm. In this experiment, a
close-range 30 cm lens was used; it captures 1800 spatial
pixels across a linear field of view of approximately 86 mm.
A translation stage setup was used where the pigment
mockup was kept lying on a horizontal surface. The standard
multistep reference target from Spectralon [75] consisting of
four shades of 99, 50, 25, and 12% reflectance values was kept
along with the mockup during acquisition. This reference
target with a known reflectance factors is used for computing
the normalized reflectance at the pixel level.

4.3 Data Processing
The obtained raw hyperspectral data was post-processed for
radiometric calibration using the HySpex RAD software,
which removes electronics noise, i.e., dark current, and
converts the raw images to the sensor absolute radiance
values. Illumination correction, i.e., spatial variability in
illumination, was performed with the help of the standard
reference target. Further data processing steps are different
for supervised andML-based classification and are explained
in the following sections.

4.3.1 Data Processing for Supervised Classification
To build a spectral library, a region of interest of approximate
size equal to that of the patches (10 × 10 mm) was
considered, and the mean spectra from these regions
were saved in the library. To evaluate the performance
of classification, a confusion matrix was computed. The
overall methodology is illustrated using a block diagram in
Figure 3. All data processing steps were computed using the
open-source software Spectralpython [76].

Selecting the appropriate threshold value for classifica-
tion algorithms is critical as it may vary depending upon
the application. For example, Li et al. [33] pointed that
the region for selecting the threshold value for SAM to be
0.1 for citrus disease detection analysis because, during the
preliminary testing, they found that at a value of 0.15, many
false positives result. A similar empirical approach has been
followed by Júnior et al. [29], and Fung et al. [77]. Thus
we also computed the optimal threshold for each of these
algorithms through empirical observation. First, we selected
a small segment of the HSI dataset of a mockup, as shown in
Figure 4. Next, the reference spectrum was extracted from a
mockup’s flat region by taking an average of 11 × 11 pixels.
Finally, we computed the classification task for all algorithms
with different threshold values and evaluated their accuracy
using the confusion matrix.

In CH applications such as pigment classification for a
painting, misclassification, i.e., the pigment being classified
as the wrong pigment, is even more crucial than a pigment
being unclassified. Hence, there should be the minimum
error for any given classification algorithm. Therefore, we
considered the classification accuracy for pigment classified
as correct pigment (P_P), misclassification (MC_), pigment
classified as unknown (P_UN_), unknown classified as a
pigment (UN_P_), and unknown classified as unknown
(UN_UN_). Figure 5 shows the graph for these parameters
over accuracy for the SID algorithm, and we can observe
that for threshold values between 0.01 and 0.03, the accuracy
for pigment classified as pigment and unknown classified
as unknown is high. Also, for misclassification value in the
range of 0.1–0.3, pigments that are classified as unknown is
minimum, and unknown classified as unknown is relatively
high and constant. A similar conclusion can be drawn by
visualizing the classification result shown in Figure 6. An
optimal threshold value used for different algorithms in our
experiment is mentioned in Table II and graph for each of the
algorithms is attached in Appendix B.

4.3.2 Data Processing for ML Classification
The obtained normalized reflectance HSI data needs to
process before it is fed to the model; data was labeled for
different classes using the label encoder. For our dataset, we
used one hot encoder, meaning for each class, one value is
hot (i.e., the value of 1), and the rest are cold (i.e., the value of
0). We divided the dataset into training and testing. With an
80-20 split, data was further normalized. We then build and
implement the model; first training dataset is used to train
the model, neural network weights and biases of neurons are
updated with each epoch till we got considerably minimum
MSE and higher accuracy. Finally, the test dataset is used to

Figure 4. A snippet of a mockup with ten pigments and substrate; Colors are approximated as RGB rendering using spectral python for bands 75, 46,
and 19 of HSI datasets.
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Figure 5. Graph for accuracy of five parameters used to determine the
optimal threshold value for the SID algorithm.

Table II. The selected threshold value for eight different classification algorithms.

Algorithms Threshold value

ED 0.9
SAM 0.1
SCM 0.8
SID 0.03
SSS 1.1
SID-SAM 0.003
SID-SCM 0.005
JM- SAM 0.09

validate the model. A block diagram in Figure 7 illustrates
an overall workflow. Training spectra of 10 pigments and a
substrate, plotted over a spatial region of approx. 100 × 100
pixels with 186 spectral bands is attached in Appendix A.

SVM model was implemented in Python using the
Sklearn library. Among the differences, we tuned our
model for three key hyperparameters, namely kernel types,
regularization, and gamma, using the Python library called
GridSearchCV. This function cross-validates the model to
avoid overfitting using k-fold cross-validation and then
computes a grid to evaluate the performance of each
combination of given hyperparameters. Table III shows the
details of hyperparameters.

For FC-NN, we build a sequential model with three
dense layers, the first layer with 32 nodes and hyper-
bolic tangent (tanh) as activation function followed by
batch normalization. The second layer has 16 nodes tanh
activation function followed by batch normalization and
dropout, and the third layer has 11 nodes and a softmax
activation function. The activation function introduces the
non-linearity into the networks so that the networks can
learn the relationship between the input and output. Tangent
hyperbolic is a non-linear function with an s-shaped graph

Table III. SVM key hyperparameters, the range used for tuning, and the optimum value
selected for classification; RBF: Gaussian Kernel Radial Basis Function.

Hyperparameter Range used Optimum value selected

Kernel ‘‘Polynomial’’, ‘‘RBF’’, ‘‘Sigmoid’’, ‘‘Linear’’ RBF
Regularization 0.1, 1, 10, 100, 1000 100
Gamma 1, 0.1, 0.01, 0.001 1
k -fold 5 5

with output ranges from −1 to 1. One reason for using
the tanh function is that it is zero-centred, which makes
the optimization icon process much more manageable. The
softmax activation function converts a value vector to a
probability distribution and is used in the output layer
of multiclass classification. For details on the activation
function, please refer [78]. For multiclass classification,
the categorical cross-entropy loss function is usually used,
and optimization algorithms, which are used to update
weights and biases; we used adaptive moment estimation
(Adam), as it is the best among the adaptive optimizers
in most of the cases [79, 80]. The network architecture
used for our experiment is shown in Figure 8. The model
was implemented in Python using Keras, a neural network
application programming interface.

The proposed 1D-CNN model was tuned for hyperpa-
rameters using KerasTuner [81]. We tuned the model for
the number of convolutional layers, their filter size, dropout,
dense layer filer size, learning rate and epoch. Figure 9
illustrates the block diagram of the tuned model with its
hyperparameter used. We used Adam as an optimizer with
a learning rate of 0.001 and categorical cross-entropy as the
loss function.

5. RESULT ANDDISCUSSION
This section will look in detail at the classified image, the
accuracy obtained for each pigment, and the overall accuracy
of the algorithms used. Figure 10 shows the classification
accuracy of each pigment for the different algorithms. The
classification result for each of these algorithms is attached
in Appendix D. We can observe that the average accuracy
(average of 10 pigments) is high for all three machine
learning algorithms. Of these three, FC-NN has the highest
accuracy, followed by 1D-CNN and SVM. For the eight
supervised algorithms used, SCM and SAM have high
accuracy, followed by SID, SID-SAM, SID-SCM, and SSS. ED
and JM-SAM have the lowest classification accuracy.

Apart from machine learning algorithms, the other
eight algorithms used have difficulty classifying pigment
6 (P6) and pigment 9 (P9). We can see in Figure 11
that spectra for both these pigments are similar and have
little difference in magnitude. This is a common issue
with supervision-based classification algorithms [9, 23].
In distance-based algorithms, ED, SSS, and JM-SAM, the
classification accuracy for similar spectra (P6 & P9) are the
lowest. We also observed that the classification accuracy
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Figure 6. Classification result for ten pigments patches obtained using SID algorithm for a different set of threshold values.

Figure 7. Workflow diagram for ML data processing.

is low for these distance-based algorithms, particularly for
pigment 7 (White Hue), which has a spectrum similar to the
substrate (S), since it is misclassified as substrate, as shown
in the confusion matrix in Figure 12. Pigment 10, as shown
in Fig. 11, has a reflectance value below 0.05 for almost the
entire wavelength region (450–1000 nm), and it seems that
the lowmagnitude value has an influence on the classification
accuracy for supervised-based algorithms. Spectra for all
pigments and substrates used are provided in Appendix C.

Classification accuracy for algorithm SID and its hybrid
combinations (SID-SAM and SID-SCM) are lower for
pigments P1 and P3. Figure 13 shows the classification
result for pigments P1, P2, and P3 for SID, SID-SAM, and
SID-SCM. Black color represents the unclassified pixels,

and we can observe that all three algorithms have similar
areas that have not been classified for P1 and P3. From the
confusion matrix shown in Figure 14, we can see that for
P1 and P3, the unclassified (UC) percentage is the second
highest value in all three algorithms.

Figure 15 shows the spectra for reference, classified
pixels, and unclassified pixels for pigments P1, P2, and P3.
It can be observed that there is a difference in spectra in
the range of 800–1000 nm. The solid red line represents the
reference spectrum, whereas red dash lines are spectra for
classified pixels, and solid green lines are for unclassified
pixels for P1. Similarly, the solid blue line is a reference
spectrum for P3, and solid orange and solid black lines are
spectra for classified and unclassified pixels, respectively. We
also plotted the range for P2, which is mostly classified.
Dashed blue line is a reference spectrum for P2, and solid
grey lines are spectra for classified pixels.

The SID algorithm uses a divergence measure to match
the reference and target pixels; the smaller the divergence
value, the more likely the pixels are similar. We have used
a threshold of 0.03, meaning that pixels with a value less
than 0.03 will only be classified, and a value greater than the
threshold will not be classified. We computed the divergence
value for a spectrum of classified and unclassified pixels with
a reference spectrum for P1, P2, and P3. The spectra used
in the calculation are shown in Figure 16. The computed
divergence is shown in Table IV.We can see that spectra that
are not classified in the case of P1 and P3 have divergence
values greater than a threshold. We can change this value
to get more pixels classified, but this will result in higher
misclassification and increase the unknown classified as a
pigment, as shown in Fig. 5.
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Figure 8. The architecture of the FC-NN classifier used in our experiment.

Figure 9. The architecture of tuned 1D-CNN model.

6. GENERAL DISCUSSION
Experimental results show that ML algorithms outperform
the supervision-based algorithms used. The limitation of
supervision-based algorithms used is that they cannot
perform well if pigments have nearly identical spectra (P6
and P9) and also if the magnitude of the spectrum is very
low (P10, reflectance factor below 0.05). We found for nearly

Table IV. SID value computed between a spectrum of reference pixels with that
of classified and unclassified pixels for P1, P2, and P3. Remark indicates that either
obtained SID value is smaller or greater than a used threshold value of 0.03.

Spectra SID value Remark

P1 Ref. & P1 C 0.005 <0.03
P1 Ref. & P1 UC 0.052 >0.03
P2 Ref. & P2 C 0.003 <0.03
P3 Ref. & P3 C 0.014 <0.03
P3 Ref. & P3 UC 0.034 >0.03

identical spectrum, SCM is a better measure than the SAM,
and this could be because SCM considers value from −1
to 1 whereas the cosine of SAM only varies from 0 to 1.
Apart from pigments P1 and P3, we found that the SID’s
hybrid approach with SAM and SCM has almost similar
results for our dataset. Due to the threshold value selected
for classification, the accuracy for P1 and P3 is lower than
for other pigments, i.e., in SID for P1 and P3 threshold
value should be greater than 0.3 as mentioned in Table IV.
The classification accuracy of algorithms based on spectral
distance, such as ED, SSS, and JM-SAM was the lowest. This
could be because these algorithms misclassified in-between
white pigment (P7) and substrate (S), which is not the case
for other supervised algorithms.

ML-based algorithms need to be trained for which we
need a large amount of data. Classification result depends
upon how well the model is trained, i.e., how large the
training datasets are so that model can learn enough distinct
features. ForML-based algorithms to performwell and avoid
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Figure 10. Classification accuracy for each pigment for all 11 algorithms used; average represents the accuracy for an average of 10 pigments for a
given algorithm.

Figure 11. Normalized reflectance spectra for pigment, used as a
reference for supervised classification; P6, P7, P9, P10, and S represent
pigments 6, 7, 9, 10, and substrate, respectively.

overfitting of amodel, it needs to be tuned for the appropriate
value of different hyperparameters, which will take a long
computing time. This adds to the cost of computational time
and complexity forML-based algorithms. On the other hand,
supervision-based algorithms do not require such a training
set and are simple and easy to compute. Therefore, for the
pigments with less complex spectra (i.e., having less identical

spectrum), supervision-based algorithms such as SCM and
SAMmight be a good fit for the classification task.

7. CONCLUSION
HSI is a non-invasive imaging technique used for the
documentation and analysis of artwork for various tasks,
such as pigment classification. It is essential as it assists
conservators and curators in precisely analyzing an object
and its historical value. In this paper, we evaluated the
spectral processing algorithms for pigment classification of a
mockup using HSI. We analyzed eight spectral image classi-
fication algorithms, i.e., ED, SAM, SCM, SID, SSS, SID-SAM,
SID-SCM, JM-SAM, and three machine learning-based
algorithms, SVM, FC-NN, 1D-CNN for its classification
accuracy. In general, machine learning algorithms out-
performed the others. Supervision-based algorithms work
well for the pigments if their spectra are very distinct in
shape from each other. Still, these algorithms have poor
performance for pigments having a similar spectrum (nearly
identical) or spectrum with just a change in magnitude.
However, machine learning-based algorithms can overcome
this limitation by extracting the features from each training
sample and thus perform better for pigment classification.
During our experiment, we trained the network for ten
pigments. However, extending the model’s scope to include
a more extensive range of pigments would be beneficial.
Additionally, exploring diverse scenarios, such as mixed
and aged pigments, would be beneficial; therefore, one can
conductmore comprehensive research in the future. By doing
so, we can refine the supervised algorithms and machine
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Figure 12. Confusion matrix of (a) ED, (b) SSS, and (c) JM-SAM.

Figure 13. Classification results for pigment P1 (in red), P2 (in green), and P3 (in blue). (a), (b), and (c) are obtained using algorithms SID, SID-SAM, and
SID-SCM, respectively.

learning models mentioned earlier to be more applicable to
real-world cases in cultural heritage.
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Figure 14. Confusion matrix; (a): SID, (b): SID-SAM, and (c): SID-SCM.

Figure 15. Spectra for pigment P1 and P3; solid red line (P1 Ref.) and
solid blue line (P3 Ref.) are reference spectra for P1 and P3, respectively;
red dashed line (P1 C) and solid green line (P1 UC) are spectra for
classified and unclassified pixels of pigment P1; solid orange line (P3
C) and solid black line (P3 UC) are spectra for classified and unclassified
pixels of pigment P3; dashed blue (P2 Ref.) and solid grey (P2 C) are
spectra for reference and classified pixels of pigment 2.

Figure 16. Spectrum of P1, P2, and P3; Ref., C and UC represent
reference, classified and unclassified, respectively.
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APPENDIX A. REFLECTANCE SPECTRA OF 10 PIGMENTS AND SUBSTRATE USED TO TRAIN SVM, FC-NN AND
1D-CNN

Figure A.1. Training spectra of 10 pigments and a substrate, plotted over spatial region of approximately 100×100 pixels with 186 spectral bands;
Viridian (V), Cerulean Blue (CB), Green Earth (GE), Yellow Ochre Light (YOL), Burnt Umber (BU), Ultramarine Blue Deep (UBD), Lead White Hue (LWH),
Genuine Vermilion (GV), Cobalt Blue Deep (CBD), Ivory Black (IB), and Substrate (S).
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APPENDIX B. GRAPH USED FOR DETERMINING THE OPTIMAL THRESHOLD VALUE FOR DIFFERENT
ALGORITHMS

Figure B.1. Classification accuracy graph of different algorithms at varying threshold values. The graph shows the accuracy of each algorithm in terms of
pigment classified as a pigment (P_P_), unknown region classified as unknown (UN_UN_), pigment classified as unknown (P_UN_), unknown classified
as a pigment (UN_P_) and pigment classifying as another pigment, i.e., misclassification (MC_).

APPENDIX C. NORMALIZED REFLECTANCE SPECTRUMOF 10 PIGMENTS AND SUBSTRATE

Figure C.1. Normalized reflectance spectrum for ten pigments and a substrate; P1: Veridian, P2: Cerulean Blue, P3: Green Earth, P4: Yellow Ochre Light,
P5: Burnt Umber, P6: Ultramarine Blue Deep, P7: Lead White Hue, P8: Genuine Vermilion, P9: Cobalt Blue Deep, P10: Ivory Black, and S: Substrate.

J. Imaging Sci. Technol. 030403-15 May-June 2023



Mandal et al.: An experiment-based comparative analysis of pigment classification algorithms using hyperspectral imaging

APPENDIX D. CLASSIFICATION RESULT FOR ALL USED ALGORITHMS

Figure D.1. Classification results obtained using various supervised and machine-learning algorithms; Euclidean Distance (ED), Spectral Angle Mapper
(SAM), Spectral Correlation Mapper (SCM), Spectral Information Divergence (SID), Spectral Similarity Scale (SSS), Jeffries Matusita-Spectral Angle Mapper
(JMSAM), Support Vector Machine (SVM), Fully Connected Neural Network (FC-NN) and One-dimensional Convolutional Neural Network (1D-CNN).
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