Back to articles
Proceedings
Volume: 36 | Article ID: IRIACV-276
Image
Synthetic Data Generation for AI-based Machine Vision Applications
  DOI :  10.2352/EI.2024.36.6.IRIACV-276  Published OnlineJanuary 2024
Abstract
Abstract

This paper presents a method for synthesizing 2D and 3D sensor data for various machine vision tasks. Depending on the task, different processing steps can be applied to a 3D model of an object. For object detection, segmentation and pose estimation, random object arrangements are generated automatically. In addition, objects can be virtually deformed in order to create realistic images of non-rigid objects. For automatic visual inspection, synthetic defects are introduced into the objects. Thus sensor-realistic datasets with typical object defects for quality control applications can be created, even in the absence of defective parts. The simulation of realistic images uses physically based rendering techniques. Material properties and different lighting situations are taken into account in the 3D models. The resulting tuples of 2D images and their ground truth annotations can be used to train a machine learning model, which is subsequently applied to real data. In order to minimize the reality gap, a random parameter set is selected for each image, resulting in images with high variety. Considering the use cases damage detection and object detection, it has been shown that a machine learning model trained only on synthetic data can also achieve very good results on real data.

Subject Areas :
Views 328
Downloads 69
 articleview.views 328
 articleview.downloads 69
  Cite this article 

Frederik Seiler, Verena Eichinger, Ira Effenberger, "Synthetic Data Generation for AI-based Machine Vision Applicationsin Electronic Imaging,  2024,  pp 276-1 - 276-5,  https://doi.org/10.2352/EI.2024.36.6.IRIACV-276

 Copy citation
  Copyright statement 
Copyright © 2024, Society for Imaging Science and Technology 2024
ei
Electronic Imaging
2470-1173
2470-1173
Society for Imaging Science and Technology
IS&T 7003 Kilworth Lane, Springfield, VA 22151 USA