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Abstract 
This paper presents a method for synthesizing 2D and 3D 

sensor data for various machine vision tasks. Depending on the task, 
different processing steps can be applied to a 3D model of an object. 
For object detection, segmentation and pose estimation, random 
object arrangements are generated automatically. In addition, 
objects can be virtually deformed in order to create realistic images 
of non-rigid objects. For automatic visual inspection, synthetic 
defects are introduced into the objects. Thus sensor-realistic 
datasets with typical object defects for quality control applications 
can be created, even in the absence of defective parts. The 
simulation of realistic images uses physically based rendering 
techniques. Material properties and different lighting situations are 
taken into account in the 3D models. The resulting tuples of 2D 
images and their ground truth annotations can be used to train a 
machine learning model, which is subsequently applied to real data. 
In order to minimize the reality gap, a random parameter set is 
selected for each image, resulting in images with high variety. 
Considering the use cases damage detection and object detection, it 
has been shown that a machine learning model trained only on 
synthetic data can also achieve very good results on real data. 

1. Introduction 
Solving machine vision tasks, e.g. automated part inspection or 

object recognition, with machine learning based approaches requires 
large and representative datasets. Since optical data acquisition and 
annotation is typically laborious the use of synthetic data might be a 
promising measure in order to reduce this effort and save time and 
costs. The main motivation for using synthetic data is twofold. First, 
in visual inspection tasks, there is often a lack of defective parts and 
consequently a lack of data with defects for training datasets, 
making it difficult to create robust machine learning models. By 
introducing synthetic defects into the 3D model of the object, the 
method presented in the paper allows the generation of datasets for 
quality control even in the absence of defective parts. Second, 
manually annotating large datasets for machine learning can be a 
time-consuming and repetitive task that often leads to 
inconsistencies in the annotated dataset.   

Rendering techniques have made significant advances in recent 
years, enabling the creation of more realistic and immersive 
experiences. However, not only the entertainment industry benefits 
from these advances, they offer also great potential for other fields. 
Thus the technology behind synthetic data generation has strongly 
profited by these rendering techniques. The objective is to create a 
synthetic dataset that can be used for training a machine learning 
model capable of being deployed on real-world camera images or 
3D sensor data. 

By using virtual scenes and automatically generating ground 
truth data, the method can significantly reduce the amount of manual 
effort required for annotation, enabling more efficient and scalable 
data generation. One major challenge using this technique is the 
domain gap that exists between real-world images and synthetic 

data. Models trained only on synthetic data tend to experience a 
significant decrease in performance when applied to real-world 
camera images. To overcome this problem, synthetic data is 
modelled very accurately and a high degree of diversity is 
introduced into the synthetic data. We demonstrate the effectiveness 
of our method on two real world scenarios, showing that a machine 
learning model trained only on synthetic data can achieve very good 
results on real data. 

 

 
Figure 1. Deformation with Lattice 

2. Related Work 
In recent years, several pipelines have been introduced to 

automatically generate synthetic datasets by simulating random 
arrangements of objects. These pipelines are usually built on top of 
3D graphics software like Blender [1], [2] or Unity3D [3]. Within 
these frameworks a multitude of solid object instances are produced. 
Subsequently, these objects are subjected to a rigid body simulation 
that accurately portrays their falling behaviour, mimicking the 
natural physics of movement and collision. This simulation ensures 
that a diverse, representative, large and unbiased range of scenarios 
is generated. The resulting data is valuable for machine vision tasks 
as object detection and bin picking. One limitation of the existing 
pipelines for synthetic data generation is their restriction to rigid 
objects. Deformations are not considered, which results in an 
unrealistic simulation of deformable objects. In addition to the 
simulated images, depth maps, object poses, and semantic 
segmentation are generated automatically. However, the data lacks 
information on the graspability of the objects in the scene. 

Instead of rigid body simulation Raistrick et al. [4] present the 
Infinigen framework for generating procedural scenes of the natural 
world. The generated images exhibit high variety, but are not photo 
realistic. Furthermore no experiments with real datasets were 
performed. 
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Another application focuses on the generation of synthetic 
images for visual inspection and object detection. Napier et al. [5] 
demonstrate how a network for segmentation can be trained solely 
on procedurally generated synthetic data. Due to a bias in the 
synthetic data, only a portion of the real test data yields good results. 
Schmedemann et al. [6] demonstrate that procedural defect 
generation can be used to augment a small real-world dataset. Here 
the combination of synthetic and real data yields better results than 
using only real data. Results based solely on synthetic data are not 
considered in the paper. 

Previous works identified the domain gap as a common 
challenge in the usage of synthetic training data for machine vision 
tasks [7]. Models typically assume that training and test data are 
very similar. However, synthetic data differ from real data. Various 
techniques are elaborated in order to facilitate the transfer between 
synthetic training data and real test data. There are mainly three 
fundamental strategies: 
1. Domain Adaptation: The aim of Domain Adaptation is to 

reduce the statistical deviation between the source and target 
domains [8]. Adaptation can occur at the input level, for 
example, by using a certain loss function, such as Adversarial 
Loss. 

2. Sensor-Realistic Rendering: This approach strives for 
photorealism in the generated images. This is achieved by 
realistic object geometry, physically correct positioning of 
objects in a scene, precise material models, and lighting. An 
important technique for this approach is Physically Based 
Rendering (PBR) [9]. 

3. Domain Randomization: Developed by Tobin et al. [10], this 
concept involves randomizing synthetic data in such a way that 
the domain of real images becomes a subset of the synthetic 
domain. In other words, for a model trained on synthetic data, 
real data appear as just one of the variations in synthetic data. 
Domain Randomization allows the use of less realistic 
renderings, which require less effort to create. In this technique, 
parameters for rendering data are randomly varied. Examples 
of such parameters include textures, lighting settings, size and 
position of objects, object shape, and backgrounds. However, 
the structure should still reflect the context of the real data. 

3. Method 
Our method is based on the open source software Blender [11] 

and follows the traditional processing pipeline for renderings from 
3D data. Initially, a model is created for the required object. 
Alternatively, existing CAD data can be utilized. In addition a UV 
map is generated for the object, which can be used in the shading 
process. In shading, all parameters and textures for the object's 
material are defined. Subsequently, a 3D scene is built based on the 
real measurement set-up with the simulation of light and sensors. In 
this scene additional processing steps such as the simulation of 
deformation, defects, or random arrangements of objects are carried 
out. Finally, the Cycles renderer is applied for physically based 
rendering of the scene. The shading process and processing steps 
will be outlined in the following sections. 

If the basic 3D scene is prepared, our method will allow the 
user to define parameters and set thresholds for all further 
processing steps and the image generation. The user can specify 
parameters regarding all parts of the 3D scene like scene 
arrangement, lighting, shading, deformation, defects and rendering. 
Based on the user settings scene variation, rendering and processing 
are fully automated in order to generate large datasets with little 

effort. Furthermore, chosen annotations are determined 
automatically during the rendering process. 

3.1 Shading 
Real world objects often have a high variety in appearance. 

This complicates the shading process, as at some point one shader 
cannot cover all possible variations. This is also observed in the 
washers utilized for examining defect generation. Therefore, four 
basic shaders were defined for the washers in order to represent 
extreme cases in variety. Figure 2 shows the selected reference 
images in the upper row and examples for the four shaders in the 
lower row. 

 

 
Figure 2. Comparison of real camera images (top row) and synthetically 
generated images (bottom row). It is obvious that the differences between the 
real and synthetic data are minimal. Furthermore, the diversity present in the 
real data is also represented in the synthetic data. 

The majority of the appearance is defined by surface structures, 
which can be reproduced by adding a normal map to the shader. For 
the washer the shader is composed of various structures and scratch 
patterns. The basic structure is given by a noise texture. Different 
scratches are generated by combining noise, wave, and voronoi 
textures, as shown in Figure 3. The combination of these structures 
in colour and normal maps allows modelling complex surface 
appearances. As all textures are generated procedurally an automatic 
variation in size, intensity and pattern enables the creation of highly 
varied synthetic data. 
 

 
Figure 3. Basic structure of the washer shader (left) and different scratch 
patterns (middle and right).  

3.2 Deformations 
If the objects are not rigid, random deformation of the objects 

can be used to generate realistic data. In this section, two methods 
for implementing random deformations on object models are 
introduced. For automated deformations a pipeline using the 
described methods is implemented as one step in the automated data 
generation process. 
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3.2.1 Cage Deformations 
 Cage deformation, also known as lattice deformation, is a 

method that utilizes a grid structure enveloping the object to 
facilitate deformation. This grid comprises control points, which can 
be manipulated freely for achieving the desired transformation. The 
alterations performed on these control points are then propagated to 
the vertices of the object, effectively changing its shape. The extent 
to which each control point influences a vertex is proportional to 
their relative distance; vertices closer to a control point will be more 
affected by its transformation. This technique allows for a more 
intuitive and flexible approach to object deformation. The process is 
illustrated in Figure 1. By randomly selecting control points and 
applying random transformations to them, all deformed objects are 
unique, allowing for the automated generation of a diverse dataset. 
 
3.2.2 Bending and Twisting 

The bending and twisting approach for object deformation is 
defined by setting an origin, axis, and rotation angle to manipulate 
the shape of an object within its local coordinate space. This 
deformation can be selectively applied to certain parts of the object 
or can comprise the entire object for a more uniform transformation. 
The process involves rotating vertices based on these specifications, 
where the proximity of each vertex to the origin determines the 
degree of its rotation. For twisting, vertices are rotated along the 
predefined axis, while bending induces a rotational deformation 
over a given axis, altering the object's structure accordingly. 
Examples of bent and twisted objects are depicted in Figure 4. 

 

 
Figure 4. The original object model is bent (left and middle) and twisted 
(right). 

3.3 Random Arrangements 
The method of creating random arrangements utilizes the 

Blender Physics Engine. This process involves generating multiple 
copies of a solid object and then applying a rigid body simulation in 
order to depict their falling behaviour accurately. The simulation is 
designed for altering the objects' position and orientation without 
causing any deformation, as deformations are accounted for in a 
previous step. In the context of these simulated environments, 
objects, that can be grasped, are identified by determining whether 
they are obscured by another object or not. This is a key step 
facilitating the creation of datasets suitable for bin picking 
applications. 

3.4 Defect Generation 
For automatic visual inspection, a defect generator is 

implemented that can apply defects to 3D models automatically, by 
modifying the object’s geometry. This procedure has been 
demonstrated for defect classes such as scratches, dents, bumps, and 

notches. Each of these defects is created at a random location and 
with a random appearance. 
 
3.4.1 Bumps and Scratches 

Displacement Maps enable simulating bumps and scratches on 
a surface, providing a one-dimensional translation of vertices along 
the normal vector. Thus, a grayscale image encodes the degree of 
displacement for each vertex through its intensity values. For 
applying these maps onto a 3D object's surface, it is necessary to 
establish a UV-Layout that translates the object’s three-dimensional 
surface into a two-dimensional representation. 

For simulating bumps, the displacement maps are characterized 
by a Gaussian intensity profile, which models the 3D topology in 
order to mimic the appearance of authentic bumps found in the real 
world. Displacement Maps for scratches are crafted with procedural 
generation techniques contributing to a considerable variability in 
their shape, size, and depth. For the accurate creation of the fine 
details of scratches, a high-resolution mesh is indispensable, 
ensuring that the nuances of each scratch are realistically portrayed. 

 

 
Figure 5. Synthetic scene of a random arrangement of syringes in a box. 

3.4.2 Dents and Notches 
An "auxiliary object" is created which acts as a negative-mold 

for deformation purposes of dents and notches. This auxiliary object 
is subject to random deformation, translation and scaling processes, 
which are key steps for enhancing the diversity of the resulting 
image set. Subsequently, a Boolean operator is applied to the 
original and auxiliary objects performing a subtractive intersection. 
This intersection carves out the auxiliary object’s shape from the 
original object resulting in the deformed original object. Figure 6 
shows the simplified representation of this method for generating 
notches. 

 

 
Figure 6. Simplified generation process for notches using a Boolean operator. 
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4. Experiments and Results 
The utility of synthetic data in real-world machine vision 

applications is shown in two different use cases by applying the 
presented methods and process steps. The two use cases originate 
from the field of visual inspection and object recognition. 
 
4.1 Object Detection 

The application of object detection is demonstrated using a bin 
picking scenario. The aim is to detect plastic syringes that are 
graspable for a robot, meaning they are not occluded by other 
syringes. Utilizing the method presented in Section 3.3 for 
generating random arrangements, 2000 simulated scenes of syringes 
in a box are automatically created. An example of a synthetic scene 
is shown in Figure 5. A state-of-the-art object detector is trained to 
identify the graspable syringes. The neural network selected for this 
purpose is EfficientDet [12]. The network, trained on synthetic data, 
is tested on six real-world images. This testing achieves a precision 
of 96% and a recall of 93%. The successful detection rates 
demonstrate the efficiency of the neural network model in 
distinguishing graspable syringes. The visualization of a test image 
with the model’s detections is shown in Figure 7. 

 
4.2 Visual Inspection 

Defective metal washers with bumps, dents, scratches and 
notches are regarded in order to demonstrate the presented 
procedure. For the test dataset, 40 images are captured for each 
defect class. For the training dataset, 500 synthetic images are 
generated for each defect class. These images are used for training 
EfficientDet as a state-of-the-art object detector. The trained model 
is tested on real data. For performance comparison, additional 
models are trained on a completely real dataset and a combined 
dataset respectively. 

 
Table 1. Overview Results of the visual inspection 

  
Precision Recall  

Bump 1.0 0.971  
Dent 1.0 0.971 

Real Data Notch 1.0 0.971  
Scratch 0.950 0.543  
Total 0.992 0.864  
Bump 1.0 0.914  
Dent 0.909 0.857 

Synthetic Data Notch 1.0 0.914  
Scratch 0.939 0.886  
Total 0.962 0.893  
Bump 0.972 1.0  
Dent 1.0 1.0 

Combined Data Notch 1.0 1.0  
Scratch 0.972 1.0  
Total 0.986 1.0 

 
With a precision of 99% and a recall of 100% achieved, the model 
based on mixed data performs best. The combination of synthetic 
and real data potentially leads to more robust features for the classes 
and can thus justify the improvement in the mixed data. The 
performance of the model based on synthetic data (precision: 96%, 
recall: 89%) hardly differs from the result with real data (precision: 

99%, recall: 86%). The models can be considered equivalent. In 
visual inspection, smaller real datasets can thus be enriched with 
synthetic data for a robust error detection. Table 1 provides a 
summary of the outcomes using real, synthetic, and combined 
training data. 
 

 
Figure 7. Camera image of a random arrangement of syringes in a box. The 
detections from an AI-based object detector, trained solely on synthetic data, 
are depicted with red bounding boxes. 

5. Conclusion 
This paper describes a method for generating realistic and 

diverse synthetic datasets. The main focus is on the realism of the 
data through realistic shaders and the simulation of defects, 
deformations and physically based random arrangements. The 
variability of data is achieved through flexible parameter definitions 
adapted to the target application. The process of data generation is 
automated by processing a pipeline with components for 
deformation, defect generation, scene arrangement and rendering. In 
two practical use cases the efficiency and applicability of the method 
is demonstrated. Synthetic data generated for object recognition as 
well as for visual inspection are successfully used for training neural 
networks. The trained models are able to achieve accurate and 
reliable results when applied to real camera images. Accordingly, 
synthetic data can be utilized as an alternative to real data when there 
is a lack of data. Besides, it can be used when real data acquisition 
is too time consuming or real data sets need to be enriched in order 
to achieve more robust AI models. 
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