Regular
Cancer DetectionCompressed Sensing
Deep Learning
Fluorescence quantification
Gradient domain
LWIRLiquid crystal variable retarder
Melanoma SegmentationMass Spectrometry Imaging
Noise reduction
Optimization
Sparse modelingSparse SamplingSpatial transcriptome analysisSemantic SegmentationSpectrum modulator
Transformers
Visualization
Whole-Slide Imaging
 Filters
Month and year
 
  55  20
Image
Pages 119-1 - 119-5,  © 2024, Society for Imaging Science and Technology 2024
Volume 36
Issue 15
Abstract

Prognosis for melanoma patients is traditionally determined with a tumor depth measurement called Breslow thickness. However, Breslow thickness fails to account for cross-sectional area, which is more useful for prognosis. We propose to use segmentation methods to estimate cross-sectional area of invasive melanoma in whole-slide images. First, we design a custom segmentation model from a transformer pretrained on breast cancer images, and adapt it for melanoma segmentation. Secondly, we finetune a segmentation backbone pretrained on natural images. Our proposed models produce quantitatively superior results compared to previous approaches and qualitatively better results as verified through a dermatologist.

Digital Library: EI
Published Online: January  2024
  36  12
Image
Pages 143-1 - 143-6,  © 2024, Society for Imaging Science and Technology 2024
Volume 36
Issue 15
Abstract

Acquisitions of mass-per-charge (m/z) spectrometry data from tissue samples, at high spatial resolutions, using Mass Spectrometry Imaging (MSI), require hours to days of time. The Deep Learning Approach for Dynamic Sampling (DLADS) and Supervised Learning Approach for Dynamic Sampling with Least-Squares (SLADS-LS) algorithms follow compressed sensing principles to minimize the number of physical measurements performed, generating low-error reconstructions from spatially sparse data. Measurement locations are actively determined during scanning, according to which are estimated, by a machine learning model, to provide the most relevant information to an intended reconstruction process. Preliminary results for DLADS and SLADS-LS simulations with Matrix-Assisted Laser Desorption/Ionization (MALDI) MSI match prior 70% throughput improvements, achieved in nanoscale Desorption Electro-Spray Ionization (nano-DESI) MSI. A new multimodal DLADS variant incorporates optical imaging for a 5% improvement to final reconstruction quality, with DLADS holding a 4% advantage over SLADS-LS regression performance. Further, a Forward Feature Selection (FFS) algorithm replaces expert-based determination of m/z channels targeted during scans, with negligible impact to location selection and reconstruction quality.

Digital Library: EI
Published Online: January  2024
  90  30
Image
Pages 144-1 - 144-5,  © 2024, Society for Imaging Science and Technology 2024
Volume 36
Issue 15
Abstract

The dynamic range of the intensity of long-wave infrared (LWIR) cameras are often more than 8bit and its images have to be visualized using histogram equalization and so on. Many visualization methods do not consider effects of noise, which must be taken care of in real situations. We propose a novel LWIR images visualization method based on gradient-domain processing or gradient mapping. Processing based on intensity and gradient power in the gradient domain enables visualizing LWIR images with noise reduction. We evaluate the proposed method quantitatively and qualitatively and show its effectiveness.

Digital Library: EI
Published Online: January  2024
  76  17
Image
Pages 161-1 - 161-5,  This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. 2024
Volume 36
Issue 15
Abstract

In spatial transcriptomics, which allows the analysis of gene expression while preserving its location in tissues, RNA molecules are hybridized with a fluorescent-labeled DNA probe for detection. In this study, we aim to improve the efficiency of spatial transcriptomics by simultaneously using multiple fluorescent dyes with overlapping spectra. We propose a method to quantify each fluorescent dyes using a liquid crystal variable retarder as a spectral modulator, which can control the spectral transmittance by changing the voltage. The spectrum of light passing through the modulator is integrated by the image sensor and observed as intensity. We quantify the fluorescent dyes at each pixel using intensities of various spectral transmittances as a spectral code and applying sparse modeling using a dictionary created by simulating observations for the fluorescent dyes used in hybridization. We verified the principle of the proposed method and demonstrated its feasibility through simulation experiments.

Digital Library: EI
Published Online: January  2024

Keywords

[object Object] [object Object] [object Object] [object Object] [object Object] [object Object] [object Object] [object Object] [object Object] [object Object] [object Object] [object Object]