In the dynamic realm of image processing, coordinate-based neural networks have made significant strides, especially in tasks such as 3D reconstruction, pose estimation, and traditional image/video processing. However, these Multi-Layer Perceptron (MLP) models often grapple with computational and memory challenges. Addressing these, this study introduces an innovative approach using Tensor-Product B-Spline (TPB), offering a promising solution to lessen computational demands without sacrificing accuracy. The central objective was to harness TPB’s potential for image denoising and super-resolution, aiming to sidestep computational burdens of neural fields. This was achieved by replacing iterative processes with deterministic TPB solutions, ensuring enhanced performance and reduced load. The developed framework adeptly manages both super-resolution and denoising, utilizing implicit TPB functions layered to optimize image reconstruction. Evaluation on the Set14 and Kodak datasets showed the TPB-based approach to be comparable to established methods, producing high-quality results in both quantitative metrics and visual evaluations. This pioneering methodology, emphasizing its novelty, offers a refreshed perspective in image processing, setting a promising trajectory for future advancements in the domain.
János Horváth, Guan-Ming Su, "Novel Image Super-resolution and Denoising Using Implicit Tensor-product B-spline" in Electronic Imaging, 2024, pp 254-1 - 254-7, https://doi.org/10.2352/EI.2024.36.10.IPAS-254