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Abstract
In the dynamic realm of image processing, coordinate-based

neural networks have made significant strides, especially in tasks
such as 3D reconstruction, pose estimation, and traditional im-
age/video processing. However, these Multi-Layer Perceptron
(MLP) models often grapple with computational and memory
challenges. Addressing these, this study introduces an inno-
vative approach using Tensor-Product B-Spline (TPB), offering
a promising solution to lessen computational demands with-
out sacrificing accuracy. The central objective was to harness
TPB’s potential for image denoising and super-resolution, aim-
ing to sidestep computational burdens of neural fields. This was
achieved by replacing iterative processes with deterministic TPB
solutions, ensuring enhanced performance and reduced load. The
developed framework adeptly manages both super-resolution and
denoising, utilizing implicit TPB functions layered to optimize im-
age reconstruction. Evaluation on the Set14 and Kodak datasets
showed the TPB-based approach to be comparable to established
methods, producing high-quality results in both quantitative met-
rics and visual evaluations. This pioneering methodology, em-
phasizing its novelty, offers a refreshed perspective in image pro-
cessing, setting a promising trajectory for future advancements in
the domain.

Introduction
The dynamic realm of image processing and the rapidly

evolving landscape of machine learning are currently undergo-
ing a paradigm shift, thanks to the innovative development of
neural fields and coordinate-based neural networks[1, 2, 3, 4].
These advanced computational models have significantly accel-
erated progress in visual computing, enabling intricate tasks such
as the synthesis of three-dimensional shapes and the refinement
of established image processing methodologies.[5, 7] As they
meticulously parse and reconstruct complex visual data, these net-
works are unlocking groundbreaking applications in digital imag-
ing, augmented reality, and virtual environments, ultimately al-
tering the trajectory of tech innovation.However, the practical
deployment of these neural networks is frequently impeded by
their intensive computational demands, which encompass an in-
satiable need for high processing power and substantial mem-
ory allocation.[7] These stringent requirements pose challenges to
scalability and versatility, particularly limiting the application of
these networks in scenarios that necessitate swift, real-time pro-
cessing and heightened resource efficiency. As a result, the uti-
lization of these advanced networks is often restricted to environ-
ments with abundant resources, thus impeding their widespread
adoption and curtailing the momentum of further technological
breakthroughs.

In direct response to these hurdles, our study introduces

Figure 1: Example of denoised image using our proposed method.

an avant-garde approach that harnesses the potential of Tensor-
Product B-Spline (TPB) technology to adeptly navigate the in-
tricacies of image denoising and super-resolution. This innova-
tive methodology markedly diverges from the traditional, itera-
tive processes associated with neural network algorithms, offer-
ing a more streamlined and resource-savvy computational alter-
native. By fine-tuning TPB coefficients to accurately depict high-
dimensional functions, our strategy significantly mitigates com-
putational load while preserving the integrity, quality, and effi-
ciency of the output.Our strategy is distinctively marked by its an-
alytical focus on the input of coordinate data over mere pixel value
examination. This strategic pivot allows for a more profound in-
vestigation into the complex interplay between the coordinates’
spatial information and the corresponding pixel intensities, dra-
matically enhancing the accuracy of the model and substantially
diminishing the propensity for predictive discrepancies. Empir-
ical evidence demonstrates that the efficacy of our TPB-centric
methodology in performing denoising and super-resolution oper-
ations is not only on a par with conventional neural network tech-
niques but is also distinguished by its operational efficiency.

Throughout this document, we meticulously delineate the ar-
chitecture of our innovative framework, probing into the detailed
workings of each critical component and elucidating the princi-
ples that underpin their functionality. We also present a com-
prehensive collection of experimental findings that lend credence
to the superior performance and dependability of our approach.
This seminal work heralds the advent of a more democratized,
economical, and scalable chapter in image processing technology,
establishing a new standard for the fusion of sophisticated engi-
neering prowess with prudential computational resource manage-
ment.Building upon the foundational aspects of our framework,
which sets a new benchmark in image processing technology, we
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now turn our attention to the broader landscape of advancements
in this domain. The following section, ’Related Work’, delves
into the realm of image super-resolution, a field where neural net-
work approaches, particularly those using Multilayer Perceptrons
(MLP), have shown significant promise. This exploration is cru-
cial to understanding the context and evolution of our methodolo-
gies within the dynamic and ever-evolving field of image process-
ing.

Related Work
In the rapidly advancing field of image super-resolution, neu-

ral network approaches have demonstrated remarkable adaptabil-
ity and performance. A study employing a Multilayer Percep-
tron (MLP)[8] framework has made significant strides in this area.
By training MLPs on various image categories, researchers have
dissected the network’s behavior and efficiency in enhancing im-
age details. The application of standard evaluation metrics like
Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR),
and Structural Similarity Index (SSIM) has allowed a comprehen-
sive assessment of image quality post-enhancement. Notably, the
findings reveal that MLPs, when trained on specific categories,
can achieve results on par with more traditional super-resolution
methods, thus positioning MLPs as a formidable approach in the
realm of low-level image processing. Complementing the MLP
framework, there has been a significant development using the
SinGAN[9] model for super-resolution. Initially, while SinGAN
offered a novel approach to creating high-resolution images from
a single input image, it was hampered by suboptimal image qual-
ity. Addressing this, a novel network structure evolving from Sin-
GAN has been put forth, which learns exhaustively from a single
image to enhance resolution. This improved structure discards
the need for noise input and integrates dense connections coupled
with attention mechanisms, considerably enhancing the network’s
learning efficiency. The impact of these alterations is evident
in the superior performance and efficiency evidenced in super-
resolution tasks, showcasing the potential of generative models
in producing high-quality super-resolution images. Another inno-
vative contribution to this domain is the development of Neural
Knitwork[10], a unique architecture that employs a coordinate-
based MLP for neural implicit representation learning. This tech-
nique diverges from the traditional pixel-based approach, instead
of using image patches to train the network. This adversarial opti-
mization of image patch distribution ensures consistency and co-
herence in the image reconstruction process. Significantly, Neural
Knitwork heralds a new direction in super-resolution, image in-
painting, and denoising by achieving high fidelity in results with
a substantial reduction in the number of required parameters. The
architecture achieves an 80% reduction in parameters compared
to convolutional neural network (CNN) solutions while deliver-
ing comparable performance and efficiency.

The quest for effective denoising techniques in image pro-
cessing has led to the exploration of both traditional and cutting-
edge methodologies. The innovative concept of Deep Image Prior
(DIP)[11] posits that the architecture of generator networks in-
nately embodies critical image statistics, which can be harnessed
without relying on an extensive learning process. Employing a
neural network that is randomly initialized, DIP effectively tack-
les a spectrum of inverse problems, notably denoising, as well
as super-resolution and inpainting. This method not only offers

high-quality image restoration from flash-no flash input pairs but
also provides insights into the inductive biases inherent in conven-
tional generator network architectures. In doing so, DIP forms a
conceptual bridge linking learning-based techniques with those
that operate without explicit learning, thus enriching the toolkit
available for image restoration. In the realm of medical imaging,
particularly the denoising of PET images, Noise2Void (N2V)[12]
has emerged as a notable unsupervised technique. It is distin-
guished by its blind-spot network architecture, which requires
merely a single noisy input image, aligning perfectly with the con-
straints of clinical environments. By incorporating group-level
pretraining along with individualized fine-tuning, and by lever-
aging anatomical images, the adapted N2V method enhances its
denoising capabilities. Through empirical evidence, it is shown
that N2V surpasses traditional denoising algorithms, demonstrat-
ing consistency and reliability in both simulated and clinical sce-
narios, thereby advocating for its adoption in practical medical ap-
plications. Adding to these advancements, Noise2Self (N2S)[13]
presents a general framework for the self-supervised denoising
of high-dimensional data. This framework is predicated on the
assumption that noise is statistically independent across differ-
ent dimensions, while the signal itself exhibits correlation. With
this foundation, N2S can calibrate an array of denoising algo-
rithms, from simple computational filters to complex deep neu-
ral networks. Its efficacy is validated across various data types,
including natural imagery, biological microscopy, and gene ex-
pression datasets. N2S extends the principles underpinning the
training of neural networks with noisy images and the application
of cross-validation in matrix factorization. This framework sets
a new standard for blind denoising and self-supervision, indicat-
ing a significant potential for the refinement and application of
self-supervised learning models in denoising and beyond.

Weller et al.’s work[14] represents a significant advancement
in tensor-product B-spline surface methodology. By introducing
internal knots, they provide improved control over local surface
properties, crucial for intricate surface modeling, especially in ap-
plications requiring high precision in localized details. This de-
velopment opens up new avenues for complex modeling tasks in
electrical engineering, where the accurate rendering of surfaces
is often essential. Building on the theme of precision and flexi-
bility in image processing, the study by Pradeep[15] and others
delves into the application of B-spline functions in this domain.
They offer a framework for image reconstruction and manipula-
tion that stands out for its efficiency and versatility. This research
extends the utility of B-splines beyond traditional applications,
presenting a toolset that can adapt to various challenges in im-
age analysis and manipulation in electrical engineering. Margolis
et al.’s[16] contribution of ”ndsplines,” a Python library for im-
plementing tensor-product B-splines in arbitrary dimensions, is a
testament to the evolving computational landscape in image pro-
cessing. This tool significantly enhances the capabilities of re-
searchers and professionals in the field, providing a versatile and
powerful resource for tackling complex image processing tasks. It
reflects the growing trend of integrating advanced computational
tools with traditional engineering methodologies. The synthesis
of these investigations delivers a robust synthesis of the current
landscape and the prospective advancements in the application of
Tensor-Product B-Spline within the domain of Image Processing.
Collectively, these studies expand the horizons of achievable out-
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Figure 2: Proposed method for Super-resolution

comes, introducing novel methodologies that not only augment
the granularity and efficacy of image processing techniques but
also catalyze the evolution of electrical engineering practices. By
enhancing current methodologies and catalyzing the inception of
groundbreaking applications, these advancements are pivotal in
charting new territories for innovation in the sector.

Method
Moving into the practical steps, the suggested method for

enhancing image detail and reducing noise features a layered ap-
proach using specialized mathematical functions known as Tensor
Product Basis (TPB). For Super-resolution, we start by breaking
down the original RGB image into overlapping pieces as shown
in Figure 2, each piece finely shaped by a specific TPB function.
The heart of this process, termed ”Multilayer TPB Optimization
SR,” layers these TPB functions to polish the image step by step.
The first layer carefully adjusts each piece to closely resemble the
original image, while the following layers aim to reduce any re-
maining discrepancies, gradually improving the image’s clarity.
The crucial ”RGB Image Construction” step then brings these en-
hanced pieces together. This step is carefully planned, using spe-
cific weighting for each pixel to ensure the pieces blend smoothly,
reducing any mismatch, and leading to a crisp, high-quality im-
age.

In the domain of image denoising, the same patch-based,
multi-layer TPB function approach is applied, with the distinc-
tion that patches are non-overlapping. The ”Multilayer TPB Op-
timization I and II” stages sequentially refine each patch as shown
in Figure 3, reducing noise by focusing on the residuals left after
each reconstruction layer. This is complemented by a Guided Fil-
ter after the first optimization layer to eliminate visual artifacts,
thereby enhancing the quality of each denoised patch. Finally, the
”YCbCr Image Construction” stage pieces together the denoised
patches to form a cohesive, clean image. This layered, iterative
approach allows for the effective reduction of noise while main-
taining image detail.

In the subsequent part, we shall present an in-depth analysis
of the Implicit Tensor Product Basis (TPB) functionality, an ad-
vanced mathematical construct pivotal in the field of electrical en-
gineering for image processing applications. This comprehensive
examination will not only articulate the conceptual framework of
the TPB but will also expound upon its practical implementation
within the scope of image enhancement techniques.

Figure 3: Proposed method for Denoising

Utilizing Implicit TPB for Image Modeling
Transitioning to the utilization of Implicit TPB for Image

Modeling, we consider a different input paradigm where coordi-
nates form the basis of the input data rather than pixel values.
The TPB receives these coordinates and processes them using
ground truth data through a non-iterative, least-squares approach
to problem-solving. This methodological choice for image mod-
eling with implicit TPB is computationally efficient and expedi-
tious. It significantly contributes to the enhancement of image
resolution and the diminution of noise, which are paramount in
improving the clarity and fidelity of the images processed within
this framework.

The input for the Implicit TPB function consists of coordi-
nate points, with the output being a single value. The mapping can
be denoted as v = fTPB((x,y)). The model consists of coefficients
mTPB, which are solved during the training function to obtain the
TPB model fTPB = fTPB fitting(v,(x,y)).

Coordinates are fundamental as input values for implicit
functions. The coordinates used in denoising and super-resolution
tasks are denoted as Φp = {(x,y)}, normalized within [0, 1]. The
normalization process within each patch is performed using:

x̂ =
(x− xp

min)

(xp
max − xp

min)
(1)

ŷ =
(y− yp

min)

(yp
max − yp

min)
(2)

The normalized coordinates are Φ̂p = {(x̂, ŷ)}.
For super-resolution, an upsampling scale ”F” is used to

create a denser grid of coordinates, thus generating a higher-
resolution patch.

The TPB optimization process is conducted on nor-
malized coordinates with the associated output values repre-
sented as ITPB fit. The fitting process is given by fTPB =
fTPB fitting(ITPB fit,{(x̂, ŷ)}).

The TPB basis functions are constructed by multiplying ba-
sis functions along each axis, with the prediction performed using:

ŜTPB(x̂, ŷ) =
Dh−1

∑
th=0

Dv−1

∑
tv=0

mTPB
th,tv ·BTPB

th,tv (x̂, ŷ) (3)
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where mTPB
th,tv are the TPB coefficients.

The optimal solution for the TPB coefficients is obtained via
the least squared solution:

mTPB,opt = ((ST
TPBSTPB)

−1(ST
TPBITPB fit)) (4)

This optimizes the coefficients for predicting the output im-
age.

In the ensuing discourse, we will meticulously dissect the
components of our methodology, shedding light on each seg-
ment’s role within the overarching scheme for super-resolution
and denoising. This detailed exposition is aimed at providing a
granular understanding of the sophisticated interplay between the
various modules that collectively contribute to the refinement and
clarity of the processed images.

Image Super-Resolution
The process of image super-resolution (SR) in our method-

ology occurs within the RGB domain. The goal is to produce an
output image with a resolution that is F times greater than the in-
put image of dimensions W ×H. This is achieved by extracting
overlapping patches of size W P×HP.Adjacent patches overlap by
regions measuring 16x32 or 32x16 pixels to maintain continuity
and consistency.

Multilayer TPB Optimization SR
This method incorporates a multi-layer architecture with

each layer consisting of a single-layer TPB optimization.

Figure 4: First Layer Structure

The first layer approximates the original image using TPB
models and calculates residuals, as detailed in Figure 8.

Figure 5: Even Number Layer Structure

Even-numbered layers aim to enhance the SR method by in-
creasing PSNR and reducing error, as shown in Figure 5.

Odd-numbered layers eliminate wave artifacts and improve
PSNR, as depicted in Figure 6.

Figure 6: Odd Number Layer Structure

Stopping Criterion of Layers
The stopping criterion is based on the stability of output

PSNR values, calculated as follows:

vPSNR,p,q = PSNR(downsample(Iout,p,q), Iinput,p) (5)

vPSNR,average,p,q =
∑

q−1
i=q−10 vPSNR,p,i

10
(6)

RGB Image Construction
In the process of formulating a super-resolution image, the

integration of overlapping patches is critical. Our methodology
utilizes patches of dimensions 32× 32 pixels, with neighboring
patches sharing overlapping regions of either 16× 32 or 32× 16
pixels. This configuration is key during the fusion phase of super-
resolution image generation.

The output image’s corner pixels are derived from a single
patch, edge pixels from two adjoining patches, and central pix-
els from four intersecting patches. To ensure a smooth transition
across patch boundaries, we propose using variable weighting fac-
tors for each pixel. The final fused pixel value for pixels covered
by multiple overlapping patches is the weighted sum of pixel val-
ues from all overlapping patches, normalized by the sum of the
weight factors.

The design of the weighting factor is optimized by assigning
weights based on the patch shape. We aim for equal weighting
within the rectangular contour for a more accurate representation.
The weighting matrix for each color channel W p×H p is prepared
using the following equations, where dC

O is the dimension of the
patch for color channel C:

σ
C
O = 0.2 ·dC

O (7)

τ
C(xup,yup) = max

(∣∣∣∣∣2
(

xup

dC
O
−0.5

)∣∣∣∣∣ ,
∣∣∣∣∣2
(

yup

dC
O
−0.5

)∣∣∣∣∣
)

(8)

wC(xup,yup) =
1
e

e
−
(

τC (xup ,yup)2

(σC
O )2

)
(9)

For boundary patches that do not have the full patch size, the
same equations are applied by aligning the top-left corner.
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Two new memory spaces are prepared with the same dimen-
sions as the image W ×H, denoted as IA and IW . The channels of
IA and IW are initialized to zero. For the patches, we define the
following notation:

IC,O
p = Super-resolved patch for color channel C (10)

IC
out,end,p = Final output for patch p in color channel C (11)

The mapped values are multiplied by the weighting matrix
and accumulated:

IC,A(xup,yup)= IC,A(xup,yup)+IC,O
p (xup,yup) ·wC(xup,yup) (12)

IC,W (xup,yup) = IC,W (xup,yup)+wC(xup,yup) (13)

After processing all patches, the accumulated weighted pixel
values are divided by the accumulated weights to obtain the final
image.

SC(xup,yup) =
IC,A(xup,yup)

IC,W (xup,yup)
(14)

The use of overlapping patches significantly improves the
quality of the super-resolution output image, providing a smooth
and cohesive visual result without blocking artifacts.

Image Denoising
Our proposed framework for image denoising operates

within the YCbCr color domain and employs an implicit func-
tion, the implicit TPB, to model each color channel. We adopt a
patch-based approach for processing.

The ”Multilayer TPB Optimization I” method is visualized
in Figure 7. This process is divided into N iterative layers.

Figure 7: Multilayer TPB Optimization I process
The first layer is crucial in approximating the original image,

which is depicted in Figure 8.
The mathematical representation of the first layer is as fol-

lows:

fTPB,p,1 = fTPB fitting(Iinput,p,Φp) (15)

Iout,TPB,p,1 = fTPB,p,1(Φp) (16)

Iout,p,1 = Iout,TPB,1 (17)

Ires,p,q = Iinput,p − Iout,p,q (18)

Figure 8: First layer of the Multilayer TPB Optimization I process

Figure 9: Subsequent layers in the Multilayer TPB Optimization
I process

Subsequent layers are designed to further enhance the PSNR.
The process for these layers is detailed in Figure 9.

The equations for the subsequent layers are given by:

fTPB,p,q = fTPB fitting(Ires,p,q−1,Φp) (19)

Iout,TPB,p,q = fTPB,p,q(Φp) (20)

Iout,p,q = Iout,TPB,p,q + Iout,p,q−1 (21)

Ires,p,q = Iinput,p − Iout,p,q (22)

”Multilayer TPB Optimization II” is detailed in the figure
below and incorporates a guided filter with a guidance map de-
rived from the Y channel of the ”Multilayer TPB Optimization I”
output.

Figure 10: Multilayer TPB Optimization II process

The guided filter operation is defined by:

Iout gf = GF filter(Iin gf, IGF map) (23)

The process follows a similar structure to the ”Multilayer
TPB Optimization I,” with adaptations to include the guided filter.
The first layer and subsequent layers are processed similarly with
the addition of the guided filter.
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Evaluation
Objective Results
Super-resolution

The efficacy of various super-resolution techniques was
quantitatively and qualitatively assessed using the Set14 dataset,
which encompasses a variety of commonly encountered image
types.

Dataset Description: The Set14 dataset, integral to super-
resolution benchmarking, consists of 14 images that represent a
cross-section of real-world scenarios. These images, with reso-
lutions spanning from 321× 481 to 768× 1024 pixels, include a
spectrum of scenes and textures.

Methods Evaluated: Our study encompasses a suite of super-
resolution methodologies, ranging from conventional coordinate
Multilayer Perceptrons (MLPs) and Convolutional Neural Net-
work (CNN)-based SinGAN Neural Knitwork frameworks to our
innovative Tensor Product Basis (TPB) approach.

Evaluation Metrics: To gauge the quality of the super-resolved
images, we computed the Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity Index Measure (SSIM), supplementing these
quantitative metrics with visual inspections to assess fidelity to the
high-resolution ground truth.

Average Results: Table 1 summarizes the performance metrics,
illustrating the relative effectiveness of each method in enhancing
image resolution.

Table 1: Average PSNR/SSIM results for Set14 dataset using var-
ious super-resolution methods.

Upscaling Bicubic MLP SinGAN Neural
Knit-
work

TPB

x2 28.43/ 27.22/ 14.21/ 24.31/ 25.62/
0.823 0.89 0.41 0.82 0.84

x4 24.04/ 22.45/ 14.32/ 21.72/ 22.37/
0.687 0.76 0.33 0.75 0.74

Our findings reveal that the TPB-based method exhibits com-
petitive performance with existing super-resolution techniques,
positioning it as a viable alternative for enhancing image quality.

Denoising
We compared various denoising approaches by analyzing

their performance across different noise levels, with results sum-
marized in Table 2.
Table 2: Quantitative comparison of denoising methods under
various noise levels.

Image TPB DIP N2V N2S

Kodak01 30.96 29.83 27.39 29.02
Kodak02 32.86 33.38 32.84 32.92
Kodak03 33.70 34.75 33.06 34.21
Kodak12 32.96 35.27 33.84 33.89

Figure 11: Example of upscaled image (x4) using our proposed
method.

Figure 12: Example of denoised using our proposed method.

You can see example of our TPB based output for both super-
resolution and denoising task on Figure 11 and Figure 12.

The TPB-based denoising method performs comparably to
other established denoising techniques, reinforcing its practicality
for image processing applications.

Future Work
The promising results obtained from the application of the

Tensor Product Basis (TPB) approach to image super-resolution
and denoising pave the way for several exciting avenues of future
research. The scalability and efficiency of the TPB framework
make it an attractive candidate for extension to other image pro-
cessing tasks such as image inpainting, segmentation, and texture
synthesis. Future work will explore the integration of TPB with
deep learning architectures to create hybrid models that can lever-
age the strengths of both traditional spline-based approaches and
modern neural networks. Another area of interest lies in the ap-
plication of the TPB framework to video processing tasks, where
temporal coherence can be modeled using higher-dimensional
TPBs.

Moreover, the adaptability of the TPB method to different
image modalities suggests its potential utility in medical imag-
ing, where it can be used to enhance the resolution and reduce
the noise of MRI and CT scans, potentially aiding in more ac-
curate diagnosis and treatment planning. The extensibility of the
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TPB framework will also be examined in the context of real-time
processing applications, such as in autonomous vehicles and mo-
bile photography, where computational efficiency is paramount.
Adapting the TPB method to work on edge devices with lim-
ited processing capabilities remains a challenging but worthwhile
goal.

Conclusion
In conclusion, this study presented a novel image super-

resolution and denoising approach using the implicit Tensor Prod-
uct Basis (TPB). Our methodology, characterized by its non-
iterative nature and computational efficiency, demonstrated com-
petitive performance against established methods across standard
benchmark datasets. Through rigorous experimentation, the TPB-
based approach not only met the quality standards set by tradi-
tional methods but also showed potential for significant computa-
tional savings. The use of TPB allows for precise control over the
modeling of image features, which is crucial in preserving image
details and reducing noise artifacts.

The qualitative and quantitative results underscore the ver-
satility of the TPB method, affirming its applicability to a broad
range of image processing tasks. By providing a balance between
performance and efficiency, the TPB framework stands as a testa-
ment to the potential of spline-based methods in the era of neural
networks. As we look to the future, the TPB approach is poised
to become a cornerstone in the development of advanced image
processing techniques. Its ability to be integrated with other com-
putational models opens up a realm of possibilities for innova-
tion and application across diverse fields. This research not only
contributes to the academic discourse but also holds significant
implications for practical applications in industry and beyond.
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