References
1MaitJ. N.EulissG. W.AthaleR. A.2018Computational imagingAdv. Opt. Photonics10409483409–8310.1364/AOP.10.000409
2IhrkeI.RestrepoJ.Mignard-DebiseL.2016Principles of light field imaging: Briefly revisiting 25 years of researchIEEE Signal Process. Mag.33596959–6910.1109/MSP.2016.2582220
3LukacR.PlataniotisK. N.2005Color filter arrays: Design and performance analysisIEEE Trans. Consum. Electron.51126012671260–710.1109/TCE.2005.1561853
4XiaoX.JavidiB.Martinez-CorralM.SternA.2013Advances in three-dimensional integral imaging: sensing, display, and applicationsAppl. Opt.52546560546–6010.1364/AO.52.000546
5NgR.LevoyM.BrédifM.DuvalG.HorowitzM.HanrahanP.
6YuanX.BradyD. J.KatsaggelosA. K.2021Snapshot compressive imaging: Theory, algorithms, and applicationsIEEE Signal Process. Mag.38658865–8810.1109/MSP.2020.3023869
7HuX.LinX.YueT.DaiQ.2019Multispectral video acquisition using spectral sweep cameraOpt. Express27270882710227088–10210.1364/OE.27.027088
8WangC.HuangQ.ChengM.MaZ.BradyD. J.2021Deep learning for camera autofocusIEEE Trans. Comput. Imaging7258271258–7110.1109/TCI.2021.3059497
9BradyD. J.PangW.LiH.MaZ.TaoY.CaoX.2018Parallel camerasOptica5127137127–3710.1364/OPTICA.5.000127
10TanidaJ.2016Multi-aperture optics as a universal platform for computational imagingOpt. Rev.23859864859–6410.1007/s10043-016-0256-0
11PlemmonsR.PrasadS.MathewsS.MirotznikM.BarnardR.GrayB.PaucaP.TorgersenT.Van Der GrachtJ.BehrmannG.2007Periodic: integrated computational array imaging technologyComputational Optical Sensing and ImagingOptica Publishing GroupWashington, DC10.1364/COSI.2007.CMA1
12ShankarP. M.HasenplaughW. C.MorrisonR. L.StackR. A.NeifeldM. A.2006Multiaperture imagingAppl. Opt.45287128832871–8310.1364/AO.45.002871
13BradyD. J.FangL.MaZ.2020Deep learning for camera data acquisition, control, and image estimationAdv. Opt. Photonics12787846787–84610.1364/AOP.398263
14YuanX.JiM.WuJ.BradyD. J.DaiQ.FangL.2021A modular hierarchical array cameraLight. Sci. Appl.10191–910.1038/s41377-021-00485-x
15JuanL.OubongG.2010Surf applied in panorama image stitching2010 2nd Int’l. Conf. on Image Processing Theory, Tools and Applications495499495–9IEEEPiscataway, NJ10.1109/IPTA.2010.5586723
16VaswaniA.ShazeerN.ParmarN.UszkoreitJ.JonesL.GomezA. N.KaiserŁ.PolosukhinI.2017Attention is all you needAdv. Neural Inf. Process. Syst.30
17DosovitskiyA.BeyerL.KolesnikovA.WeissenbornD.ZhaiX.UnterthinerT.DehghaniM.MindererM.HeigoldG.GellyS.UszkoreitJ.
18RomanoY.EladM.MilanfarP.2017The little engine that could: Regularization by denoising (red)SIAM J. Imaging Sci.10180418441804–4410.1137/16M1102884
19UlyanovD.VedaldiA.LempitskyV.2018Deep image priorProc. IEEE Conf. on Computer Vision and Pattern Recognition944694549446–54IEEEPiscataway, NJ10.1109/CVPR.2018.00984
20GharbiM.ChaurasiaG.ParisS.DurandF.2016Deep joint demosaicking and denoisingACM Trans. Graph.351121–1210.1145/2980179.2982399
21JaderbergM.SimonyanK.ZissermanA.2015Spatial transformer networksAdv. Neural Inf. Process. Syst.28
22ZhangZ.2000A flexible new technique for camera calibrationIEEE Trans. Pattern Anal. Mach. Intell.Vol. 22133013341330–4IEEEPiscataway, NJ10.1109/34.888718
23HeY.YanR.FragkiadakiK.YuS.-I.2020Epipolar transformersProc. IEEE/CVF Conf. on Computer Vision and Pattern Recognition777977887779–88IEEEPiscataway, NJ10.1109/CVPR42600.2020.00780
24WangL.WangY.LiangZ.LinZ.YangJ.AnW.GuoY.2019Learning parallax attention for stereo image super-resolutionProc. IEEE/CVF Conf. on Computer Vision and Pattern Recognition122501225912250–9IEEEPiscataway, NJ10.1109/CVPR.2019.01253
25ChenC.QingC.XuX.DickinsonP.2021Cross parallax attention network for stereo image super-resolutionIEEE Trans. MultimediaIEEEPiscataway, NJ10.1109/TMM.2021.3050092
26YanB.MaC.BareB.TanW.HoiS. C. H.2020Disparity-aware domain adaptation in stereo image restorationProc. IEEE/CVF Conf. on Computer Vision and Pattern Recognition131791318713179–87IEEEPiscataway, NJ10.1109/CVPR42600.2020.01319
27PlotzT.RothS.2017Benchmarking denoising algorithms with real photographsProc. IEEE Conf. on Computer Vision and Pattern Recognition158615951586–95IEEEPiscataway, NJ10.1109/CVPR.2017.294
28WangY.WangL.YangJ.AnW.GuoY.2019Flickr1024: A large-scale dataset for stereo image super-resolutionInt’l. Conf. on Computer Vision Workshops385238573852–7IEEEPiscataway, NJ10.1109/ICCVW.2019.00478
29GeigerA.LenzP.UrtasunR.2012Are we ready for autonomous driving? the KITTI vision benchmark suiteConf. on Computer Vision and Pattern Recognition (CVPR)IEEEPiscataway, NJ10.1109/CVPR.2012.6248074
30ButlerD. J.WulffJ.StanleyG. B.BlackM. J.A naturalistic open source movie for optical flow evaluationEuropean Conf. on Computer Vision (ECCV)2012SpringerBerlin, Heidelberg611625611–2510.1007/978-3-642-33783-3_44
31DosovitskiyA.FischerP.IlgE.HausserP.HazirbasC.GolkovV.Van Der SmagtP.CremersD.BroxT.2015Flownet: Learning optical flow with convolutional networksProc. IEEE Int’l. Conf. on Computer Vision275827662758–66IEEEPiscataway, NJ10.1109/ICCV.2015.316
32MayerN.IlgE.HausserP.FischerP.CremersD.DosovitskiyA.BroxT.2016A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimationProc. IEEE Conf. on Computer Vision and Pattern Recognition404040484040–8IEEEPiscataway, NJ10.1109/CVPR.2016.438
33DenningerM.SundermeyerM.WinkelbauerD.OlefirD.HodanT.ZidanY.ElbadrawyM.KnauerM.KatamH.LodhiA.2020Blenderproc: Reducing the reality gap with photorealistic renderingInt’l. Conf. on Robotics: Sciene and Systems, RSS 2020DagstuhlWadern
34KingmaD. P.BaJ.
35WangZ.BovikA. C.SheikhH. R.SimoncelliE. P.2004Image quality assessment: from error visibility to structural similarityIEEE Trans. Image Processing13600612600–1210.1109/TIP.2003.819861
36ZhiT.PiresB. R.HebertM.NarasimhanS. G.2018Deep material-aware cross-spectral stereo matchingProc. IEEE Conf. on Computer Vision and Pattern Recognition191619251916–25IEEEPiscataway, NJ10.1109/CVPR.2018.00205