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Abstract. We demonstrate a physics-aware transformer for
feature-based data fusion from cameras with diverse resolution,
color spaces, focal planes, focal lengths, and exposure. We also
demonstrate a scalable solution for synthetic training data generation
for the transformer using open-source computer graphics software.
We demonstrate image synthesis on arrays with diverse spectral
responses, instantaneous field of view and frame rate. c© 2022
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1. INTRODUCTION
In contrast with systems that use physical optics to form
images, computational imaging uses physical processing
to code measurements but relies on electronic processing
for image formation [1]. In optical systems, computational
imaging enables ‘‘light field cameras [2]’’ that capture
high dimensional spatio-spectral-temporal data cubes. The
primary challenge of light field camera design is that, while
the light field is 3, 4 or 5 dimensional, measurements still
rely on 2D photodetector arrays. High dimensional light
field capture on 2D detectors can be achieved using three
sampling approaches: interleaved coding, temporal coding
and multiaperture coding. Interleaved coding, as is famously
done with color filter arrays [3], consists of enabling adjacent
pixels on the 2D plane to access different parts of the
light field. Mathematically similar sampling strategies for
depth of field are implemented in integral imaging [4] and
plenoptic cameras [5]. This interleaved approach generalizes
to arbitrary high dimensional data cubes in the context of
snapshot compressive imaging [6]. Temporal coding consists
of scanning the spectral [7] or focal [8] response of the
camera during recording.

Array cameras [9] offer many potential advantages
over interleaved and temporal coding. The advantage over
temporal scanning is obvious, a camera array can capture
snapshot light fields and does not therefore sacrifice tem-
poral resolution. Additionally, development of cameras with
dynamic spectral, spatial and focal sampling is more chal-
lenging than development of array components that sample
slices of the data cube. The advantage of multiaperture
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cameras relative to interleaved sampling is more subtle,
although implementation of interleaved sampling is also
physically challenging. On a deeper level, however, inter-
leaved sampling makes the physically implausible assump-
tion that temporal sampling rates and exposure should
be the same for different regions of the light field. In
practice, photon flux in the blue is often very different
from in the red and setting these channels to a common
exposure level is injudicious. The design of lenses and
sensors optimized for specific spectral and focal ranges leads
to higher quality data.

With these advantages in mind, many studies have
previously considered array cameras for computational
imaging [10–12]. More recently, artificial neural networks
have found extensive application in array camera control
and image processing [13, 14]. Of course, biological imaging
systems rely heavily on array imaging solutions. While
conventional array cameras originally relied on image-based
registration [15] for ‘‘stitching’’, biological systems integrate
multiaperture data deep in the visual cortex. In analogy with
the biological system approach, here we demonstrate that
array camera image fusion from deep layer features, rather
than pixel maps, is effective in data fusion from diverse
camera arrays.Our approach is based on transformer [16, 17]
networks, which excel at establishing long-range connections
and integrating related features.

Since transformer networks are more densely connected
than convolutional networks, high computational costs have
inhibited their use in common computer vision tasks. Non-
local neural connections drastically increase the receptive
field for each feature element. As shown here, however, when
the transformer is integrated with the physics of the system,
the connections outside of the physical receptive fields can be
trimmed to the extent that the complexity of transformers is
comparable to convolutional networks.

There are three main branches of combining physical
models with neural algorithms. First, plugging a learned
model as a prior into a physical model, which is also known
as ‘‘plug and play’’. RED [18] is an example that applied
a denoiser as its prior. The second way initiated by deep
image prior [19] is using a network architecture as a prior,
thus removing the requirement of pretraining. The methods
above, however, are optimized for a scene in a loop, restrict-
ing real-time applications. The third method is integrating
the physics of the system with the neural algorithm. The
physics of the system can take the form of, for example,
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a parameterized input to the algorithm (e.g., the noise level
in a denoising system [20]) or a sub-module in the algorithm
architecture (e.g., the spatial transformer [21]). In a camera
array, the intrinsics and extrinsics are usually exploited.
Using them to characterize an array has several advantages:
(1) they are not likely to change once the cameras are
encapsulated; (2) their derivatives like the epipolar geometry
naturally build connections of sensor pixels; (3) they can
be achieved by mature calibration techniques like [22] with
efficiency. The epipolar transformer [23] is an example that
leverages the epipolar geometry to estimate the human pose.
Within the field of image fusion, the parallax-aware attention
model [24] was introduced to derive a high-resolution image
from two rectified low-resolution images. The model has
been extended to process unrectified pairs [25] and to
solve general image restoration tasks from homogeneous
views [26]. Our algorithm is also inspired by this architecture
but focuses on general fusion tasks in the camera array.

As with many physical image capture and processing
tasks, the forward model for array camera imaging is easily
simulated but the inverse problem is difficult to describe an-
alytically. This class of problems can be addressed by training
neural processors on synthetic data. Synthetic data is highly
effective in training imaging systems with well-characterized
forward models. Datasets that include synthetic data can be
semi-virtual, containing synthetic labels from real media of
high quality such as the DND denoising benchmark [27],
the Flickr1024 stereo super-resolution dataset [28], and the
KITTI2012 multitask vision benchmark [29]. On the other
hand, datasets can be completely virtual from source to
sensors. Among those, the MPI-Sintel Dataset [30] is one
of the milestones that use CG software to generate data.
It contains rich scenes and incredible labeling accuracy
of the optical flow, depth, and segmentation, which are
either not achievable or expensive to generate in real scenes.
Its successors include FlyingChairs [31] and Scene Flow
Datasets [32]. As CG software keeps evolving, we see
more fancy features being developed and integrated into
handy packages like BlenderProc [33]. In addition, recent
achievements in render engines like GPU-aided ray tracing
allow us to realistically, accurately and efficiently model the
world and render the modeled world to sensors of ideal
virtual cameras. The rendered frames can be regarded as the
ground truth. Synthetic sensor data that is degraded can be
generated from the ground truth via the forward model of
the camera array.

Surprisingly, it is unnecessary to build photorealistic
real-world scenes for some computer vision problems. This
finding was implied by [31, 32] where unnatural synthetic
data yielded advanced optical flow estimation results. Image
fusion problems likewise focus on low-level features like
color and texture, while are less concerned with high-
level features modeling physical interactions or semantic
information that contribute to naturality. Also, photorealistic
rendering intentionally introduces aberrations, distortion,
blur and other defects to resemble the performance of
existent optical components and detectors. This add-on

feature increases the computational cost but is unwanted
for neural fusion algorithms that require ground truth
labels of high quality and sometimes beyond the physical
limits. Hence scenes with abstract objects native to computer
graphics software with diverse colors and textures can
span the problem domain of image fusion. Along with the
programming interface provided by Blender (http://www.bl
ender.org), this data synthesis pipeline can be easily deployed
and automatically scaled up to fit diverse data demands.
With the assistance of better synthetic data, we can expect
networks of better performance to be easily deployed.

Here, we use this approach to build a physics-aware
transformer (PAT) network that can fuse data from the array
cameras of the diverse resolution, color spaces, focal planes,
focal lengths, and exposure. The purpose of this system is
to combine data from array cameras to return a computed
image superior to the image available to any single camera.
Array cameras are designed in these systems to exploit
differences in the spatial and temporal resolution needed to
capture color, texture and motion.

We demonstrate four example systems. The first system
combines data from wide field color cameras with narrow
field monochrome cameras, the second combines color
information from visible cameras with the textural informa-
tion from near infrared cameras, the third combines short
exposure monochrome imagery with long exposure narrow
spectral band data and the fourth combines high frame
rate monochrome data with low frame rate color images.
As a group, these designs combine with PAT processing to
show that array cameras optimized for effective data capture
can create virtual cameras with radically improved dynamic
range, color fidelity and spatial/temporal resolution.

2. PROPOSEDMETHOD
The goal of PAT is to fuse data from cameras in an array.
The fusion result reflects the viewpoint of one selected
camera. The selected viewpoint is the alpha viewpoint α
while others are alternative beta viewpoints β1 ∼ βm, where
m is the number of alternative viewpoints. To represent
images, features, or parameters from a certain viewpoint, the
viewpoint symbol is marked as the left superscript.

The architecture of PAT is illustrated in Figure 1.
The workflow of PAT is (1) each sensor image goes
through Fig. 1(a) to generate its corresponding feature;
(2) features are fed into Fig. 1(b) to generate the final
output. As images may differ in resolution, color spaces,
focal planes, etc., proper representations are learned to
facilitate correspondence matching. We adopt the residual
atrous-spatial pyramid pooling (ASPP) module [24] to
fulfill this task, which demonstrates effectiveness to generate
multiscale features. For each camera, the feature produced
by the image representation module shares the spatial
dimensions with its sensor image, thus the position of
each pixel is inherently encoded to the indices of voxels.
Here a ‘‘voxel’’ denotes a D-length vector along the feature
dimension, as illustrated in Figure 2. In this sense the epipolar
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Figure 1. The architecture of physics-aware transformer (PAT). ‘‘a×a conv’’ are convolutional layers with kernels of a×a size. The stride of convolutional
layers is 1 and the padding is (a−1)/2. The dilation of convolutional layers d is 1, unless specified. The depth dimension of convolutional layers and
residual blocks are notated after commas. The parameter each hollow block may take is given in parenthesis. (a) Image representation module. It takes
sensor image I and produces the associate feature F . ⊕ denotes addition. (b) The attention engine and post-fusion module. αF is the feature of α I from
alpha viewpoint and βF s are features of β Is from alternative viewpoints. s is the upscaling factor. The output is the fusion result α Ĩ . (c) The architecture of
‘‘3×3 resblock’’. (d) The architecture of ‘‘3×3 resASPPblock’’.

geometry and other physical priori in the pixel domain are
expected to work in the feature domain.

It is to be noted that we do not require the resolution
of all the cameras in the array to be the same, thus features
may have diverse spatial dimensions but share the third
dimension D. The representation modules of different input
frames share the weights. The attention engine, elaborated
shortly, is where we process the image representations given
the input physical information. The processed featureU goes
through several convolutional layers and residual blocks to
produce the image output, which reflects the alpha viewpoint
but with information from the beta view.

2.1 Attention Engine
The attention engine densely aligns the features with regard
to the input physical receptive fields. The attention engine
starts from image representations (features) of sensor images.
We apply dot-product attention to compare and transfer
the alternative features. We perform C3 operations: Col-
lect,Correlate, andCombine to generate the feature output.
For simplicity, we use a system with two viewpoints to
illustrate C3 operations with the receptive fields following
the epipolar geometry, as shown in Figure 3. From the
feature αF ∈ RαH×αW×D of the alpha camera, we produce
a query feature Q ∈ RαH×αW×D through a residual block
and a convolutional layer. Similarly, each alternative feature
βF ∈ RβH×βW×D produces a key feature K ∈ RβH×βW×D

and a value feature V ∈RβH×βW×D.

Figure 2. A feature (translucent cube) and one of its voxels (solid stick).

Collect: qj ∈RD is jth voxel in Q. The range of j is from
1 to αH × αW . Voxels {kj1 , kj2 , kj3 , . . . , kjn}, k ∈ RD in K
and voxels {vj1 , vj2 , vj3 , . . . , vjn}, v ∈ RD are selected along
the epipolar line of qj. In other words, j1, j2, j3, . . . , jn are
top-n closest locations to the epipolar line of location j. n is
predefined in practice depending on the spatial dimensions
of the beta view.

J. Imaging Sci. Technol. 060401-3 Nov.-Dec. 2022



Huang, Hu, and Brady: Array camera image fusion using physics-aware transformers

Figure 3. Workflow of the attention engine and C3 operations in a dual-camera array with the awareness of the epipolar geometry. We use cubes to
represent features and bars to represent voxels. ‘‘·’’ is the symbol of matrix multiplication.

Correlate: We calculate the score sj between αqj and
extracted ks to find the correspondence. sj is equal to the dot
product of

[
kTj1; k

T
j2; k

T
j3; . . . ; k

T
jn

]
and αqj.

Combine: We combine voxels {vj1 , vj2 , vj3 , . . . , vjn}
with regard to sj by calculating the dot product of[
vj1 , vj2 , vj3 , . . . , vjn

]
and softmax(sj), where softmax(·)

is the softmax function. We denote the combined voxel as
ṽj. The concatenation of αfj and ṽj is the jth voxel uj of the
output feature U ∈RαH×αW×2D.

For more than one alternative viewpoints, the jth output
vector uj is equal to concat (αfj, β1 ṽj, β2 ṽj, . . . , βm ṽj), for
concat(·) is the concatenate function. C3 operations are
fully vectorized, thus deployment of the attention engine on
trending deep learning platforms is for convenience.

One may notice the attention engine reduces to PAM
[24] when m = 1, αH = βH , αW = βW ,C = 3,D = 64,
and each receptive field follows the epipolar geometry in a
rectified stereo pair, except that the intercorrelated validation
mask is not incorporated into U . In comparison, PAT can
process images of different characteristics from three ormore
cameras, where rectification cannot be performed.Moreover,
PAT can integrate other physical clues, like maximum
disparity or homography-based approximation, to optimize
computation. In Collect for example, if we roughly estimate
the correspondence of qj using geometry transformation, the
epipolar line can be truncated with regard to the maximum

displacement, which is based on the depth distribution of the
scene. The diagram of this process is shown in Figure 4.

2.2 Complexity Analysis
It is essential to ensure that the above operation are achiev-
able and efficient with regard to time complexity. For j
is the voxel index of the output feature U , let us assume
L = maxj |{kj1 , kj2 , . . . , kjn}|, where | · | returns the size of
the set. The complexity of Collect is O(L), of Correlate is
O(D× L), and of Combine is O(D× L). Hence overall to
compute the entire output feature for m alternative view-
points, we have the complexity O(m×H ×W ×D× L).

For example, we assume we know the intrinsics and
extrinsics in a dual-camera array, where m = 1 and the
resolution of the cameras is H ×W . We can specify the
physical receptive field in the attention engine to be the
indices of beta feature voxels along the epipolar line of each
alpha feature voxel, assuming the feature representations
of images also follow the epipolar geometry in the spatial
dimensions. In this case, the total time complexity is
O(H × W × D × L), where L is linear to H + W . In
comparison, the time complexity of a single convolutional
layer is O(H ×W × D × Nconv), for Nconv is the number
of elements in the convolutional kernel. We can see two
complexities are basically the same up to a scale under big
O notation. Furthermore, we can incorporate homography-
based approximation, where we roughly locate associate
voxels of each alpha voxel via perspective transformation.
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Figure 4. Incorporation with other physical clues in Collect. For conciseness we show Q and K as big squares with regard to the spatial dimensions
and associate voxels as small squares. When all the clues are considered, only the voxels indicated by solid small squares that reside along the epipolar
line and inside the dotted window are selected from K for the next Correlate.

Figure 5. An example of the views of a dual camera system. The resolution of the images is 2048×1536.

Knowing the depth range of interest in a scene, we can
set the maximum pixel displacement l between the rough
estimates and exact correspondences to truncate the epipolar
lines. Thus the complexity can be further reduced to
O(H ×W ×D× l), as typically l�W .

Here, we can see another merit the attention engine
carries in terms of time complexity. We can chop the alpha
feature into patches with spatial resolution Hp ×Wp. The
attention engine infers on those patches in parallel, bringing
the time complexity down to O(m×Hp×Wp×D× L).

2.3 Data Synthesis
As mentioned earlier, the pipeline of data simulation is fully
automatic. We use the Python API of Blender to scale up the
generation of scenes. Blender provides a variety of meshes,
fromwhichwe select several representativemeshes including
‘‘plane’’, ‘‘cube’’, and ‘‘uv-sphere’’, and enrich the database by
perturbing the surface to create diverse ridges and valleys.
We can specify the dimensions, locations, and rotations of
the meshes to diversify their distribution in a scene. Upon
the creation of each shape, we can attach the ‘‘material’’
attribute to customize its interaction with the light source.
There are dozens of knobs to adjust the base color, diffusion,
or specularity; apart from those, we can apply vectorized

textures, e.g., brick texture and checkerboard texture, to
add varieties to color distribution on the mesh. Occlusion
and shadows are naturally introduced while stacking up the
meshes.

Blender provides camera objects to render the scene.
Just as in real cameras, parameters like the focal length,
sensor size, pixel pitch, and resolution can be easily set. If
the ‘‘Depth of Field’’ feature is on, parameters like the focal
plane and F-stop allow realistic modeling of the defocus
blur. Blender allows common picture formats as outputs,
including lossy JPEG, lossless PNG, or even RAW with full
float accuracy. The color space of the output can be BW, RGB,
or RGBA. Figure 5 shows an example of rendered views of
a dual-camera system. We can see rich features, colors, and
interactions of the objects in the frames, and also parallax
between two frames.

We also implement other functions (The simulation
functions, training scripts, and evaluation notebooks for
the following experiments are available at https://github.c
om/arizonaCameraLab/physicsAwareTransformer), among
which we would like to emphasize the function of animation
generation. We can assign random trajectories and transfor-
mations tomashes, and stream the datawith regard to a given
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Figure 6. The views of the wide field - narrow field array. The pixel count of (a) is around 10× the pixel count of (c).

Figure 7. (a) is the fused frame on the wide field - narrow field array. (b) and (c) are associate details of the fused frame and the view of the wide field
camera, respectively.

frame rate. It can benefit array camera research on temporal
connections.

2.4 Implementation Details
The following details are shared by PATs for the experiments.
The unique settings for each application are specified in the
next section.

2.4.1 Dataset
We rendered 900 scenes of the resolution 1536× 2048 to two
cameras using the EEVEE render engine in Blender 2.92. 800
scenes were for the training and 100 scenes for the validation.
One of the virtual cameras was selected to have the alpha
viewpoint and the other had the beta viewpoint. The objects
in the scene distribute within a 20-meter range. Rendered
frames were in RGB color. We selected 49 patches of the
resolution 128× 384 across each scene, and then cubically
downsampled the patches to 32× 96. PATs were trained on
these patches with αH = βH = 32, αW = βW = 96, and
j ranging from 1 to 32 × 96. Each sample in the dataset
has a pair of patches, where the patch from the alpha
view is regarded as the ground truth. The degraded inputs,
instead, were generated from the patch from the alpha view

(alpha patch) and beta view (beta patch) while training via
the forward model with regard to the array setting. We ex-
ported the extrinsics and intrinsics of two cameras and con-
structed the receptive fields according to the epipolar geome-
try, i.e., a densemap from each voxel index j in the alpha view
to the associate voxel indices j1 ∼ jn in the beta views. n for
all j was set to 96 in our dataset. The physical receptive fields
for each sample were stored as arrays along with two patches.

2.4.2 Training
PATs were trained on the NVIDIA Tesla V100S GPU.
Hyperparameters below were shared by the experimental
systems:

D 64 Epoch 80
s 1 Criterion Mean Square Error
C̃ 3 Optimizer Adam [34]
Learning Rate 0.0002, decays by half per 30 epochs
where D, s and C̃ are consistent with the notations in Fig. 1.
The parameters that were specific to the application are
clarified in the following subsections. The model with the
best peak signal-to-noise-ratio (PSNR) performance on the
validation set was selected for inference.
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Figure 8. The fused frame with different receptive fields. (a) is generated with the calibrated receptive fields that accurately reflect the physics of the system.
(b) is generated with the receptive fields assuming the inputs are rectified.

2.4.3 Inference
The intrinsics and extrinsics of the camera array were
calibrated through MATLAB Stereo Vision Toolbox. We
combined epipolar geometry and homography-based ap-
proximation to construct the physical receptive fields. The
max displacement l was set to 80 unless specified.Hp andWp
were dependent on the resolution of input images and RAMs
of computational devices.

3. EXPERIMENTS
Here we demonstrate four experimental systems with diverse
sampling designs and PAT processing for image fusion,
following the order mentioned in the introduction.

3.1 Wide Field - Narrow Field System
It is observed that chroma can be substantially compressed
compared to luminance before the decompression error is
perceived by humans. Inspired by that, we demonstrate a
wide field color - narrow field monochrome system that

compressed the color of the narrow field of view (FoV) by
up to 40×. The configurations of the array were:

Narrow field camera
Body Allied Vision Alvium 1800 U-1240m
Sensor CMOS Monochrome
Lens 25 mm TECHSPEC HR Series
Resolution 4024× 3036

Wide field camera
Body iDS UI-3590LE-C-HQ
Sensor CMOS Color
Lens 5 mm Kowa LM5JCM
Resolution 4912× 3684

The focal plane of the wide field camera was set to its
hyperfocal distance. The narrow field camera focused on the
black optical table around 7 m away.

Figure 6 shows the camera views in an example scene.
Considering the color filters on the wide field camera and
10× resolution gap in the narrow field, the red and blue raw
signals were subsampled by 10× 4= 40× and the green raw
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Figure 9. Data from PittsStereo-RGBNIR dataset [36] and the fused result. The orange, blue, and green windows contain the details in the scene from
near to far. The brightness of details is adjusted to enhance contrast.

signals were subsampled by 10× 2= 20× compared to the
luminance.

PAT acted as a color decompressor on this system that
upsampled the colors in the narrow field. PAT was trained
with two inputs. We converted the alpha patch to grayscale
as one input and had the beta patch unchanged as the
other input. To model possible resolution gaps and blur, we
augmented the training data by (1) adding box blur to the
alpha input; (2) adding box blur to the beta input; (3) 2×
bicubically downsampling the beta input; (4) combining (2)
and (3). These augmentation techniques were selected at
random with equivalent probabilities during training and
validation. The batch size of training was set to 32 and C
was set to 3. In the training and inference phases, the alpha
input was repeated along the feature dimension three times
and the beta input was bicubically upsampled to its original
dimensions if it had been downsampled.

Before implementing the trained PAT on the sys-
tem, we evaluated the algorithm on Flickr1024 [28] and

KITTI2012 [29] (20 frames) test sets. For each testing sample,
we used whole frames instead of patches to generate inputs.
The alpha framewas converted to grayscale as the alpha input
and the beta frame was 2× or 4× bicubically downsampled
as the beta input. Based on the characteristics of the test sets,
the physical receptive fields indicated truncated horizontal
epipolar lines of the length 120 divided by the downsampling
rate. In Table I, we listed average PSNR and SSIM [35] scores
between (1) the ground truth alpha frames and the grayscale
alpha inputs in the ‘‘Alpha Input’’ column; (2) the beta frames
and the beta inputs bicubically-upsampled to the original size
in the ‘‘Beta Input’’ column; (3) the ground truth alpha frames
and the fused results of PAT in the ‘‘Fusion’’ column. It can be
observed that PAT improved the test system by maintaining
the structures of the alpha input and improving the color
upsampling results compared to the beta input solely.

We assigned the alpha viewpoint to the narrow field
camera while inferencing. The result is shown in Figure 7.
In comparison, colors were upsampled by up to 40× to
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Figure 10. Data from our visible-NIR camera array and the fused result. The orange, blue and green windows contain the details in the scene from near
to far. The brightness of details is adjusted to enhance contrast.

Figure 11. The views of the short exposure - long exposure array under diverse exposures in relative scales. 1 unit is approximately 12 microseconds.

Table I. Comparison between inputs and fused results of PAT (monochrome - color
inputs).

Dataset Scale Alpha Input Beta Input Fusion

Flickr2014
×2

21.42/0.8800
24.95/0.8161 27.26/0.8992

×4 21.84/0.6265 25.85/0.8840

KITTI2012
×2

26.40/0.9178
28.48/0.8845 29.55/0.9097

×4 24.56/0.7376 28.40/0.8957

the narrow view without scarifying the sampling rate of the
luminance. Although the color bleeding artifacts caused by
a large upsampling rate can be observed in certain regions,

we reduced the artifacts to the minimum by providing
accurate physical information to the system. As illustrated
in Figure 8, the correct receptive field yielded the result in
Fig. 8(a) with correct colors (pink stickers in the orange
window) and less artifacts (storage box in the greenwindow).

3.2 Visible - Near Infrared Systems
As a result of reduced atmospheric scatter and absorption,
near infrared (NIR) cameras achieve higher contrast in
landscape photography. However, infrared (IR) signals are
typically recorded asmonochromatic data, thus are not visual
friendly. Here we show PAT acted as a visualization tool
to fuse color and NIR views while retaining the texture of
remote objects on visible - NIR camera arrays. We used the
data from two visible-NIR arrays; one was from a public
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Figure 12. (a) is the fused frame on the short exposure - long exposure array. Zoomed-in views on the side highlight objects of different spectral responses.
(b) are the associate details of the original frame from the short exposure camera. Details in (c) are captured by a cellphone camera to provide the readers
with color references. The color balance of the fused frame and the brightness of details are adjusted for display.

database PittsStereo-RGBNIR [36] and the other was built by
us. The configurations of the camera array from the online
dataset are available in Reference [36]. We used rectified
images of the resolution 582× 429 from the database. Our
visible-NIR system was composed of two 35 mm EO-4010
cameras, onewith a color filter and the otherwith aNIR filter.
The resolution of both cameras was 2048× 2048.

We applied the pretrained PAT from the wide field -
narrow field system to this fusion task to highlight the ability
of domain adaptation of our algorithm. The attention engine
of PAT operates on the features, thus is robust to the data that
differs in appearance, brightness, etc.

The alpha viewpoint was assigned to the NIR camera
while inferencing. Figures 9 and 10 demonstrate the fusion
results with zoomed-in details on the given data. The color
was well transferred to the fusion results in the presence

of complicated occlusion and parallax. Moreover, different
appearances of distant objects in the visible and NIR frames
were fused nicely, as demonstrated in the green boxes.

3.3 Short Exposure - Long Exposure System
For visible color imaging, multiaperture sampling allows
independent exposure and focus control for each band.
We demonstrate this capability using a 2× 2 camera array
based on the Arducam 1MP×4 Quadrascopic OV9281.
The cameras were monochromatic and had 1280 × 800
resolution. One camera with a 12 mm lens had no filter,
while the others with 8 mm lenses were equipped with three
filters. The central wavelengths of the filters were 450 nm, 550
nm, and 600 nm respectively. The filters shared 80 nm full
width at half maximum. The exposure time of each camera
was controlled independently to optimize the dynamic range
of the signal. Figure 11 shows the views of four cameras.
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Figure 13. The fused results of the permutated input sequence, where the 450 nm view and 650 nm view were switched. The color balance is adjusted
for display.

Figure 14. The views of the HFR - LFR array. The exposure time of (a) was 4.3 ms. The exposure times of (b)–(d) were the same, around 12 ms. Since the
HFR camera was not synchronized with LFR cameras, (a) was captured ±2.15 ms away from the moment that (b)–(d) were captured. The orange windows
highlight the moving pillow. The brightness and contrast of the patches in the orange windows were adjusted for display.

Compared to uni-exposure systems, such as cameras with
the Bayer filter, our system allowed up to 5× differences in
exposure, thus having higher overall throughput of spectral
data.

PAT was trained with 4 inputs. The alpha patch was
converted to be grayscale as the alpha input. The red, green,
and blue channels were unpacked from the beta patch as
three alternative inputs. Note the color filters of our synthetic
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Table II. Comparison between inputs and fused results of PAT (monochrome - spectral
inputs).

Dataset Scale Alpha Input Beta Inputs PAT

Flickr2014
×2

21.42/0.8800
24.95/0.8161 25.55/0.8714

×4 21.84/0.6265 24.00/0.8493

KITTI2012
×2

26.40/0.9178
28.48/0.8845 28.77/0.8955

×4 24.56/0.7376 28.13/0.8903

training data did not exactly resemble the filters we used with
regard to the spectral curves. The batch size of training was
set to 16 and C was set to 1 as inputs were monochromatic.

Most of the test settings agreed with those in the wide
field - narrow field system, except that the beta frame was
unpacked into three frames of a single color channel and
downsampled to generate three beta inputs. In Table II, PSNR
and SSIM scores in the ‘‘Beta Inputs’’ column were first
averaged between three spectral bands of the beta frame
and corresponding beta inputs, and then averaged across all
beta frames. The meanings of other columns are the same as
in Table I. Similarly we can also see PAT improved overall
system performance.

While inferencing, the alpha viewpoint was assigned to
the camera without the filter. Figure 12 shows the fused
result. The result preserved the geometry of the alpha
camera view and displayed the correct color, indicating
that the algorithm effectively adapted to data with different
filter functions. We can expect the result generated with
the optimized spectral throughput to have a higher dy-
namic range. Note that PAT is physical-based rather than
perception-based, therefore the network does not ‘‘guess’’ the
color beyond physical clues. As shown in Figure 13, the color
channels of the fused frame were permutated with regard to
the way that the inputs were permutated.

3.4 High Frame Rate - Low Frame Rate System
Sensors with color filters sacrifice quantum efficiency
compared to monochrome sensors, thus requiring a longer
exposure time to achieve a comparable signal-to-noise ratio
(SNR). This prevents standalone spectral cameras from
achieving a higher frame rate. Here we demonstrate an
imaging system that combines one high frame rate (HFR)
monochrome camera with three low frame rate (LFR)
spectral cameras as a better solution to sample the light field
temporally. This system enables PAT to reconstruct the light
field at a high frame rate.

We applied one Basler acA1440-220um camerawith a 12
mm lens as the HFR camera, which can reach 227 frames per
second (fps) at the 1456× 1088 resolution. Three Arducam
cameras with 8 mm lenses and spectral filters in the short
exposure - long exposure system were applied as the LFR
cameras. The LFR cameras are synchronized, operating at
30 fps. Figure 14 shows the views of four cameras in a
scene where the moderate motion of the pillow occurred.
We can see the LFR frames deteriorated in the region that

Figure 15. Fused results on the HFR - LFR array. The color balance is
adjusted for display.

has motions, while the associate region in the HFR frame
remained sharp.

The alpha and beta viewpoints were assigned to theHFR
camera and LFR cameras, respectively. For one LFR frame
captured at a certainmoment, the HFR frames captured±15
ms from that moment correspond to that LFR frame. We
assumed the epipolar constraint was valid in general between
the LFR frame and associate HFR frames and built physical
receptive fields accordingly. We applied the pretrained
PAT from the short exposure-long exposure system while
inferencing. Figure 15 shows the fused result, which fused the
HFR camera view with colors from three spectral cameras.
Because the epipolar geometry does not strictly hold for
unsynchronized frames, slight color jittering of letters in
the pillow was observed. However, the majority of colors of
the pillow were effectively fused and the motion boundary
was well preserved. We expect the physical information that
characterizes the lags between frames and the motion in the
scene to refine the receptive fields and yield an improved
result.

Given two sets of LFR frames with three filters (6 frames
in total) captured at 0 and 26 ms, PAT fused seven HFR
frames with color in between. Figure 16 shows the patches
of the moving pillow in the fused results. The pillow in the
fused patches was in color with sharp motion boundaries,
compared to LFR patches.

4. DISCUSSION
In this paper, we discussed themerits of sampling using array
cameras and proposed a physics-aware transformer (PAT)
for image fusion on array cameras.

We concluded that heterogeneity is a good criterion
to evaluate the array design. Specifically, cameras in the
array should be complementary tomaximize the information
throughput, sampling diverse perspectives of the light field,
such as FoV, resolution, focal plane, focal length, color space,
and exposure. Dynamic control and interleaved coding are
also expected to incorporate multiaperture sampling to
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Figure 16. The patches of the moving pillow. (a) and (f) are two consecutive frames from a 600 nm LFR camera. The left images in (b)–(e) and (g)–(i) are
the patches from the HFR camera while the right images are from the fused results. The labels are the estimated time elapsed from the moment that (a) was
captured. Three LFR frames captured at 0 ms were used to generate the results in (b)–(e), while three LFR frames captured at 26 ms were used to generate
the results in (g)–(h). The color balance is adjusted for display.

boost diversity. All these together pose novel challenges
to camera designers. The main point of design shifts
from optimizing a single lens to optimizing a multicamera
system to achieve the target performance within budget.
For instance, the multiscale spectral sampling or foveated
spatial sampling [13] are more favorable. With that in mind,
we demonstrated four experimental systems with diverse
sampling strategies and anticipated the inner thoughts to
inspire future designs of camera systems.

We showcased the versatility of PAT on four different
camera arrays. In contrast to its predecessors, this network
architecture can incorporate tailored receptive fields to re-
flect the physics of the imaging system like epipolar geometry
and homography, thus being applicable to general arrays of
multiple cameras, nonstandard layouts and heterogeneous
specifications with comparable efficiency. The proposed
pipeline of data synthesis effectively provides training data
for transformers and has the potential to benefit other
learning algorithms. We envision PAT being a standard
processing tool for array cameras of the next generation, and
inspiring designs, combinations and applications of array
cameras for better light field sampling.
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