

OpTIFlow – An optimized end-to-end dataflow for accelerating

deep learning workloads on heterogeneous SoCs

Shyam Jagannathan, Vijay Pothukuchi, Villarreal Jesse, Kumar Desappan, Manu Mathew, Rahul Ravikumar, Aniket Limaye, Mihir

Mody, Pramod Swami, Piyali Goswami, Embedded Processors Business, Texas Instruments

Carlos Rodriguez, Emmanuel Madrigal, Marco Herrera

Abstract
A typical edge compute SoC capable of handling deep

learning workloads at low power is heterogeneous by design. It

hosts multiple compute modules such as real-time IPs for capture

and display, hardware accelerators for imaging, computer vision,

deep learning, multimedia codecs, GPU for 2D/3D visualization

and CPU cores such as ARM and DSP for general compute. Every

participating compute module transacts using common resources

such as system interconnect, L3/L4/DDR memory systems to

seamlessly exchange data between them. A careful orchestration of

this dataflow is important to keep every producer-consumer at full

utilization without causing any drop in real-time performance. The

software stack for such complex workflows can be quite

intimidating for customers to bring-up and more often act as an

entry barrier for many to even evaluate the device. In this paper

we propose techniques developed on TI’s latest TDA4V-Mid SoC,

targeted for automotive and industrial applications; designed

around ease-of-use and device entitlement class of performance

out-of-box using community popular open standards such as

GStreamer, OpenVx, OpenCV, TFLite-RT, ONNX-RT, Neo-AI-

DLR runtimes.

Introduction
Deep-learning based solution is today’s defacto approach to

solve various real-world problems using embedded devices. As

show in Figure 1 realizing simple tasks such as object detection,

image classification, semantic segmentation requires a careful

consideration and design while using low power heterogenous

SoCs to ensure a balanced cost-power-performance tradeoff.

Software for such demanding use-cases can be highly complex to

bring-up and maintain, it can take many man-months to realize and

prove quite an entry barrier for customers to quickly evaluate and

prototype. Typically, a middleware is the bridge between high

level software stack and low-level device firmware. It is important

to choose a popular open-source middleware which provides a

familiar programming interface to developers and also aims to

provide device entitlement class of performance out-of-box. In this

paper we discuss the merits of community popular GStreamer [1]

and OpenVx [2] middleware which helps bridge this gap and help

customers quickly put together performance optimized demos in

minutes. TI’s latest TDA4V-Mid [3] based Edge AI starter kit

comprising of ARM A72, R5F, TI’s C71x, C66x DSP, accelerators

for ISP, lens-distortion-correction, multi-scaler, noise-filter [4],

dense-optical-flow, stereo-disparity-engine, multimedia

accelerators for H.264/H.256 codecs and GPU, is the ideal solution

for both automotive and industrial analytics market offering 8

TOPS of deep-learning performance and capable of handling 4-8

multiple cameras of varying resolution all under 10 watts of power.

Figure 1. Example illustration of various deep learning tasks possible on TI’s
latest TDA4V-Mid based EdgeAI starter kit

Typical camera-inference-display dataflow
A typical “camera-inference-display” pipeline will involve

capturing raw images from a sensor via real-time CSI interface,

followed by ISP processing to extract RGB or NV12 images,

followed by an optional lens-distortion correction for fish-eye

lenses to provide a rectified image. This could branch to either

human vision or machine vision pipeline which require image

resizing and pre-processing before submitting the frame for deep-

learning based inference. The output of inference is visualized with

some post-processing and this either sent to real-time HDMI/eDP

display or encoded for storage or streaming. Every single operation

described will be mapped to the most optimal and available

accelerator which basically splits the operations over multiple

cores. A designated host core constructs this signal-chain to

manage the real-time data and orchestrate multiple accelerators to

get the desired output. The key aspect here is to build an optimal

dataflow without copying image buffers between multiple compute

cores. Each compute core might be operating at different

frequencies and it becomes challenging to keep each producer-

consumer pair adequately balanced to meet use-case performance

goals.

OpenVx is a standard designed by the Khronos group to help

orchestrate varying computer-vision functions as an acyclic graph.

Figure 2 illustrates a typical OpenVx application graph which

realize such inference use-case. The host core would construct a

IS&T International Symposium on Electronic Imaging 2023
Autonomous Vehicles and Machines 2023 113-1

https://doi.org/10.2352/EI.2023.35.16.AVM-113
© 2023, Society for Imaging Science and Technology

single graph comprising of multiple “nodes”, where each node

represents an imaging or vision operation. A node is an

instantiation of a “kernel” which could either run on the same host

core or a remote target. The target kernel would in-turn call a low-

level driver to interface with an accelerator. TI’s OpenVx

implementation optimizes the signaling and data-buffer exchange

between these remote targets. While it helps abstract and simplify

multiple aspects of multicore processing, it still requires the

application developer to understand some coarse grain details of

what the framework offers to build an optimized graph. It

particularly gets challenging when graphs have to be intersected at

multiple intermediate points, mandating a solid understanding of

the middleware and its minute nuances. This at times becomes an

entry barrier for customers, the cost associated here being the time

taken to comprehend the complexities of the middleware and also

intricacies of the hardware to realize such simple usecases.

Figure 2. Typical OpenVx based capture-inference-display pipeline illustrating
single acyclic graph of interconnected nodes which remote core/accelerator
processing

Interplay of open source frameworks and SoC
It is quite important for silicon vendors to abstract out both

hardware and software complexities to help customers quickly

evaluate their device. Making the programming model more

familiar to a group of engineers who are exposed to a rich eco-

system of open source frameworks such as GStreamer, TFLite-RT

[5], ONNX-RT [6], OpenCV [7] is the key to a successful design

win. While many such open-source software stacks are offered off-

the-shelf to run on ARM cores, it’s the responsibility of the silicon

vendors to provide hooks to their underlying accelerators and

compute cores in a seamless way to differentiate performance.

As shown in Figure 2, customers would love to build use-

cases with various type of inputs such as USB camera, smart

camera with on-board ISP, RAW cameras which requires on-chip

ISP, compressed video/image files from disk, compressed

bitstreams streamed from a network etc. These varying inputs can

be pre-processed and fed to a choice of popular deep-learning

runtime such as TensorFlow-RT, ONNX-RT or TVM based Neo-

AI-DLR [7]. The output of inference would be post-processed to

apply some visualization such as drawing boxes on detected

objects using popular image processing/computer vision libraries

such as OpenCV. This is followed by either displaying the results

on the screen or encoding the same for storage or streaming. While

providing this flexibility improves ease-of-use, this shouldn’t come

at the cost of performance. This establishes as an interesting

problem statement to offer open-source software stack with device

entitlement class of performance.

Figure 3. Flexible runtime configurations to select between multiple inputs,

inference runtime and outputs

Flexible analytics dataflows using GStreamer
GStreamer is an industry popular streaming media framework

which allows users to define flexible data pipelines mainly to

perform audio and video processing. A typical GStreamer

application comprises of multiple participating “elements” or

“plugins”, each responsible for executing a certain function. They

are typically connected back to back with data flowing from

“source” to “sink”. The framework automatically negotiates the

capabilities of each participating element, allocates buffer pools

and starts the pipeline for streaming. Each element typically runs

in its own thread and maintains data and control queues to

maintain the order of processing but still function asynchronously.

The GStreamer framework also provides a way to define “custom

elements” by deriving its base classes. While GStreamer offers

complete flexibility and ease-of-use, it can get extremely complex

to design a “zero-buffer-copy” pipeline, especially when the

participating elements are running on different cores/accelerators.

TI’s OpTIFlow solution combines the best of both GStreamer and

OpenVx to provide an optimal dataflow for camera based analytics

enabling open-source stack to run efficiently on heterogeneous

SoCs like TDA4V-Mid.

Figure 4 illustrates OpTIFlow in action connecting the

industry popular RaspberryPi v2 [8] raw camera with Sony’s

IMX219 sensor to TDA4V-Mid’s ISP followed by a multi-scaler

operation to feed the human vision and machine vision pipelines.

The color-convert and pre-processing operation is offloaded to

C66x DSP before calling a choice of open-source deep-learning

runtime for inference on C71x DSP. The inference output is then

post-processed using OpenCV on ARM and presented to the

display in a windowed fashion using the multi-scaler hardware

accelerator.

113-2
IS&T International Symposium on Electronic Imaging 2023

Autonomous Vehicles and Machines 2023

Figure 4. Typical GStreamer based capture-inference-display pipeline illustrating multiple compute cores and accelerator processing

OpenVx based custom GStreamer elements
 As shown in Figure5, a typical OpenVx node comprises of a

host module and a target kernel. The host module is an interface

between the application developer and compute module. The target

kernel calls the low-level drivers to work with the hardware to get

the desired functionality. The OpenVx frame work takes care of

managing input and output buffers, handling IPC between host

core and target core, maintaining desired cache coherency and

ensuring data integrity [9]. A call to the host module is non-

blocking, the host can go to IDLE state or execute other tasks

while the target kernel gets busy executing some function with the

hardware.

Figure 5. Interplay of OpenVx and GStreamer elements for flexibility and
efficient processing

Whereas a typical GStreamer element comprises of one or

multiple sink and source pads attached to the body of the element.

The pads are responsible for negotiating capabilities of the peer

elements and manage data buffer pools between the elements. The

body of the element performs a desired function. This function can

either be executed on the same host core or be offloaded to a

remote core. The solution proposed in this paper, combines the

best of both OpenVx nodes and GStreamer elements. While

GStreamer elements provides the flexibility of running them as

independent threads, the OpenVx node is used to offload

efficiently to the remote target. Figure 5 also show how a

GStreamer element can call an OpenVx node. Each element

creates one-graph-one-node pipeline as opposed to one-graph-

multiple-nodes in the OpenVx case. The buffers exchanged

between sink and source pads are passed as-is to OpenVx input

and output buffers respectively. The OpenVx framework takes care

of passing the buffers to the remote targets by applying the

appropriate cache operations.

Figure 6. Extending GStreamer base classes to create custom base classes
to handle zero-buffer-copy between elements. Template classes to handle
different input, output scenarios

As the top-level interface is GStreamer we need to extend the

GStBufferPool base class to create custom classes which help

allocate buffers in the common pool exchanged between host and

target cores, and also help glue the buffer data-structures between

GStreamer and OpenVx nodes. As shown in Figure 6 we created 3

derived classes GstImageBufferPool, GstTensorBufferPool and

GstRawImageBufferPool, to help transact with vx_image,

vx_tensor and tivx_raw_image OpenVx data structures. These

extended classes use the OpenVx based memory allocator to create

IS&T International Symposium on Electronic Imaging 2023
Autonomous Vehicles and Machines 2023 113-3

the buffer pool negotiated between custom peer elements. This is

how zero-buffer-copy is achieved. To handle different

combinations of input and outputs we also extend the

GstBaseTransform class to create different extended classes to

handle single-input-single-output, single-input-multiple-output,

multiple-input-single-output usecases.

Batch processing with custom GStreamer
elements

While OpenVx based graphs have multiple nodes in a single

graph, the custom GStreamer elements create multiple graphs with

a single node. This configuration provides flexibility but it

increases the number of interrupts issued to host core especially in

the muti-channel scenarios. Each participating element issues a

completion interrupt for every frame processed. If a pipeline

comprises of M elements and we process N channels then host

core will receive MxN elements. OpenVx graphs can handle

multiple channels by creating vxObjectArray [10] which enables

batch processing. Standard GStreamer elements does not provide

an option to perform batch processing, so we created new

GstTiovxMux and GstTiovxDeMux elements as illustrated in

Figure 7 which helps batch multiple inputs and take advantage of

OpenVx ObjectArrays under the hood. Peer elements which

understand batch processing can be linked together to construct an

end-to-end chain. This way we potentially reduce the number

interrups from MxN to Mx1. If there are any standard elements in-

between then it should be guarded between a pair of demux and

mux elements as defined by the usecase.

Figure 7. Interplay of OpenVx and GStreamer elements for flexibility and
efficient processing

DLInferer Gstreamer element to support multiple
DL runtime

OpTIFlow also supports working with popular deep-learning

runtime framework such as TensorFlow-RT, ONNX-RT and TVM

based Neo-AI-DLR. In construction the design is similar to custom

GStreamer elements. We have defined a DLInferer class which

abstracts different runtimes. Users can provide a pre-imported

models to the desired runtime which gets either completely or

partially offloaded to the DL accelerator and fall back to host

ARM for unsupported layers [12]. The backend to these runtimes

is again an OpenVx node which runs on C71x DSP target. Tensor

objects are exchanged between the custom GStreamer elements

and DL runtime without any buffer copies as the memory is again

allocated from the same OpenVx allocator.

Results
Table I below shows total time taken to execute a GStreamer

pipeline with custom elements in milliseconds(ms) followed by a

breakup of inference time taken by the DLInferer element. The

table also shows A72 host core loading. Mostly the processing on

the host-core is attribute to post-processing using OpenCV with

color-conversion and dl-pre-processing offloaded to C66x DSP.

The results are discussed for 4 different DL networks executed on

ONNX-RT and TFLite-RT.

Table I: Performance summary for executing different DL networks

Model name FPS Total
Time (ms)

Inference
Time (ms)

A72
(%)

ONR-CL-6360-
regNetx-200mf

30.9 33.07 2.00 15.63

ONR-OD-8220-
yolox-s-lite-
mmdet-coco-
640x640

30.5 33.13 11.02 14.39

TFL-CL-0000-
mobileNetV1-
mlperf

30.7 33.11 1.01 14.89

TFL-OD-2020-
ssdLite-mobDet-
DSP-coco-
320x320

30.7 33.16 5.01 11.80

Table II provides DDR bandwidth consumption in total to

execute an OpTIFlow pipeline. The TDA4V-Mid SoC is paired

with 4GB LP-DDR4 clocked at 4266MTS. Which at 50%

efficiency at room temp provides about 8.5GB/s bandwidth. The

data shown here is to execute a pipeline discussed earlier with Rpi

v2 camera followed by ISP, pre-processing and one of the DL

network shown. This is then followed by post-processing,

windowing and sent to display

Table II: DDR throughput summary

Features DDR Read
BW (MB/s)

DDR Write
BW (MB/s)

DDR Total
BW (MB/s)

ONR-CL-6360-
regNetx-200mf

1504 604 2108

ONR-OD-8220-
yolox-s-lite-
mmdet-coco-
640x640

1882 756 2578

TFL-CL-0000-
mobileNetV1-
mlperf

1464 603 2067

TFL-OD-2020-
ssdLite-mobDet-
DSP-coco-
320x320

1553 594 2147

113-4
IS&T International Symposium on Electronic Imaging 2023

Autonomous Vehicles and Machines 2023

Table III shows further break up of tasks running on remote

cores like C66x, C7x DSP and participating accelerators like MSC

(multi-scaler) and ISP (for processing raw image from Rpiv2

camera)

Table III: Various target core, accelerator loading

Model name C71x
DSP
(%)

C66x
DSP
(%)

VISS
HWA
(%)

MSC
HWA
(%)

ONR-CL-6360-
regNetx-200mf

6 26 9.95 22.33

ONR-OD-8220-
yolox-s-lite-
mmdet-coco-
640x640

32 79 9.97 21.52

TFL-CL-0000-
mobileNetV1-
mlperf

5 27 9.81 22.36

TFL-OD-2020-
ssdLite-mobDet-
DSP-coco-
320x320

16 34 24.72

Conclusion
In this paper we have discussed the merits of using both

OpenVx and GStreamer based approaches and how it is important

to balance flexibility, ease-of-use and performance for analytics

use-cases. While OpenVx dataflows optimizes execution using 1-

graph-M-nodes, GStreamer based approach achieves the same

using M-graph-M-nodes. The performance differences between the

both approaches are negligible as maximum tasks are offloaded to

a heterogeneous set of compute cores and accelerators. TI’s

OPTIFlow is offered currently on TDA4V-Mid class of device but

the same stack will be compatible with other spectrum of analytics

devices with similar hardware profiles.

References
[1] GStreamer-

https://gstreamer.freedesktop.org/documentation/application-

development/introduction/gstreamer.html

[2] OpenVx - https://www.khronos.org/openvx/

[3] TDA4V-Mid - https://www.ti.com/product/TDA4VM

[4] Shyam Jagannathan, Mihir Mody, Jason Jones, Pramod Swami and

Deepak Poddar, “Multi-sensor fusion for Automated Driving:

Selecting Model and Optimizing on Embedded Platform”, AVM

track, Electronic Imaging, 2018

[5] Abadi, Martín, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy

Davis, Jeffrey Dean, Matthieu Devin et al. "Tensorflow: A system for

large-scale machine learning." In 12th {USENIX} symposium on

operating systems design and implementation ({OSDI} 16), pp. 265-

283. 2016.

[6] ONNX Runtime - https://onnxruntime.ai/docs/execution-providers/

[7] Neo-AI DLR - https://github.com/neo-ai/neo-ai-dlr

[8] Pagnutti, Mary & Ryan, Robert & Cazenavette, George & Gold,

Maxwell & Harlan, Ryan & Leggett, Edward & Pagnutti, James.

(2017). Laying the foundation to use Raspberry Pi 3 V2 camera

module imagery for scientific and engineering purposes. Journal of

Electronic Imaging. 26. 013014. 10.1117/1.JEI.26.1.013014.

[9] M. Abeysinghe, J. Villarreal, L. Weaver and J. Bakos, "OpenVX

Graph Optimization for Visual Processor Units," 2019 IEEE 30th

International Conference on Application-specific Systems,

Architectures and Processors (ASAP), New York, NY, USA, 2019,

pp. 123-130, doi: 10.1109/ASAP.2019.00-19.

[10] K. Chitnis et al., "Novel OpenVX implementation for heterogeneous

multi-core systems," 2017 IEEE International Conference on

Consumer Electronics-Asia (ICCE-Asia), Bengaluru, India, 2017, pp.

77-80, doi: 10.1109/ICCE-ASIA.2017.8309323.

[11] K Desappan, et.al, “CNN Inference: Dynamic and Predictive

Quantization”, IEEE International Conference on Consumer

Electronics, (ICCE) , Berlin, 2018.

[12] M. Mathew, K. Desappan, P. K. Swami, S. Nagori, and B. M.

Gopinath, “Embedded low-power deep learning with tidl,” Texas

Instrum., Dallas, TX, USA, Tech. Rep. SPRY314, 2018.

Author Biography
Shyam Jagannathan is an EdgeAI architect and Senior Member of

Technical Staff at Embedded Processors Group, Texas Instruments. His

domains of interest include DSP architecture, SoC architecture, hardware

accelerators, deep learning, perception, sensor fusion localization, path

planning and overall system optimization He received a master’s degree in

the field of Signal Processing and Communications from Illinois Institute of

Technology, Chicago in 2013

Vijay Pothukuchi is an EdgeAI and Robotics Architect at Embedded

Processor’s Group, Texas Instruments. Hi domains of interest include,

Robotics, Analytics, and middleware such as ROS, OpenVx, GStreamer and
DDS.

Jesse Villarreal is a software architect for TI’s heterogeneous multicore

SoCs and a Senior Member of Technical Staff (SMTS) at Embedded

Processors Group, Texas Instruments. He received a master’s degree from

the University of Texas at Dallas in Computer Engineering and has been

with Texas Instruments since 2001. His areas of interest include DSP

software optimization, heterogeneous multicore middleware frameworks,

vision and imaging hardware accelerators, and overall system software

scalability, portability, and optimization

Kumar Desappan is Senior Member of Technical Staff (SMTS) at Texas

Instruments (TI) Incorporated. His domains of interest are Machine/Deep

learning, image processing and computer vision algorithms with a focus on

software solution for edge devices. He received Bachelor of Engineering

(BE) from Anna University - Chennai in 2005

Manu Mathew is a Senior Member of Technical Staff (SMTS) at Processors

Business in Texas Instruments (TI) leading the development of Algorithms
and Tools for EdgeAI. His domains of interest are Deep Learning,

Computer Vision, Image Processing, and Video coding. He received his

Master’s in Signal Processing from Indian Institute of Science (IISc) in
2000

Rahul Ravikumar is a Software Engineer working on EdgeAI SDK for TI

devices at Embedded Processors Group, Texas Instruments. His domains

of interests include Edge Analytics, Embedded Linux, Gstreamer. He
received a master’s degree from BITS Pilani in the field of Embedded

Systems and been with Texas Instruments since 2021.

IS&T International Symposium on Electronic Imaging 2023
Autonomous Vehicles and Machines 2023 113-5

https://github.com/neo-ai/neo-ai-dlr

Aniket Limaye is a software engineer working with TI’s heterogeneous
multicore SoCs, at Embedded Processors Group, Texas Instruments. He

received a master’s degree from the Indian Institute of Technology Bombay

in Electrical Engineering and has been working in Texas Instruments since
2021. His areas of interest include heterogeneous multicore middleware

frameworks and system software optimization

Mihir Mody is SoC Architect lead (DMTS) responsible for roadmap and

chip definition for Sitara MCU business in Texas Instrument (TI). His
domains of interest are real time control, image processing, computer

vision, deep learning and Video coding. He received his master’s in

electrical engineering from Indian Institute of Science (IISc) in 2000

Pramod Swami is Distinguished Member of Technical Staff (DMTS) at
Processors Business in Texas Instruments (TI) leading the software

development for EdgeAI processing. His domains of interest are Embedded

systems, Digital Signal Processors, Deep Learning, Computer Vision,
Image Processing, and Video coding. He received his Bachelor’s degree in

Electronics and communication engineering from Malaviya National

Institute of Technology (MNIT) Jaipur in 2001

Piyali Goswami is a Member Group Technical Staff (MGTS) at Processors
Business in Texas Instruments (TI) leading the development of Software

Development Kits (SDKs) for Edge AI. Her domains of interest are

frameworks, system power, performance and security. She received her
Master’s in Software Systems from Birla Institute of Technology and

Science (BITS) Pilani in 2014.

Carlos Rodríguez is an embedded software engineer currently working as a

software team lead at RidgeRun. Carlos is focused on Embedded Linux

multimedia projects, including GStreamer, WebRTC, Video and Image

Processing, Camera Drivers development, and Deep Learning. Carlos'

work is focused on helping customers and high-tech companies to bring

their multimedia products to market

Emmanuel Madrigal is a RidgeRun embedded software developer. He
received a master's degree from the Costa Rica Institute of Technology in

the field of Digital Signal Processing and has been with RidgeRun since

2018. His areas of interest include DSP, deep learning and embedded
devices

Marco Herrera is a Computer Engineer working as an Embedded Software

Developer at RidgeRun Engineering. He graduated from the Costa Rica

Institute of Technology and over the past few years has been involved in

multiple projects regarding multimedia processing with GStreamer as well
as embedded Linux and machine learning applications.

113-6
IS&T International Symposium on Electronic Imaging 2023

Autonomous Vehicles and Machines 2023

