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Abstract 
A typical edge compute SoC capable of handling deep 

learning workloads at low power is heterogeneous by design. It 

hosts multiple compute modules such as real-time IPs for capture 

and display, hardware accelerators for imaging, computer vision, 

deep learning, multimedia codecs, GPU for 2D/3D visualization 

and CPU cores such as ARM and DSP for general compute. Every 

participating compute module transacts using common resources 

such as system interconnect, L3/L4/DDR memory systems to 

seamlessly exchange data between them. A careful orchestration of 

this dataflow is important to keep every producer-consumer at full 

utilization without causing any drop in real-time performance. The 

software stack for such complex workflows can be quite 

intimidating for customers to bring-up and more often act as an 

entry barrier for many to even evaluate the device. In this paper 

we propose techniques developed on TI’s latest TDA4V-Mid SoC, 

targeted for automotive and industrial applications; designed 

around ease-of-use and device entitlement class of performance 

out-of-box using community popular open standards such as 

GStreamer, OpenVx, OpenCV, TFLite-RT, ONNX-RT, Neo-AI-

DLR runtimes. 

Introduction 
Deep-learning based solution is today’s defacto approach to 

solve various real-world problems using embedded devices. As 

show in Figure 1 realizing simple tasks such as object detection, 

image classification, semantic segmentation requires a careful 

consideration and design while using low power heterogenous 

SoCs to ensure a balanced cost-power-performance tradeoff. 

Software for such demanding use-cases can be highly complex to 

bring-up and maintain, it can take many man-months to realize and 

prove quite an entry barrier for customers to quickly evaluate and 

prototype. Typically, a middleware is the bridge between high 

level software stack and low-level device firmware.  It is important 

to choose a popular open-source middleware which provides a 

familiar programming interface to developers and also aims to 

provide device entitlement class of performance out-of-box. In this 

paper we discuss the merits of community popular GStreamer [1] 

and OpenVx [2] middleware which helps bridge this gap and help 

customers quickly put together performance optimized demos in 

minutes. TI’s latest TDA4V-Mid [3] based Edge AI starter kit 

comprising of ARM A72, R5F, TI’s C71x, C66x DSP, accelerators 

for ISP, lens-distortion-correction, multi-scaler, noise-filter [4], 

dense-optical-flow, stereo-disparity-engine, multimedia 

accelerators for H.264/H.256 codecs and GPU, is the ideal solution 

for both automotive and industrial analytics market offering 8 

TOPS of deep-learning performance and capable of handling 4-8 

multiple cameras of varying resolution all under 10 watts of power.  

 

Figure 1. Example illustration of various deep learning tasks possible on TI’s 
latest TDA4V-Mid based EdgeAI starter kit 

Typical camera-inference-display dataflow 
A typical “camera-inference-display” pipeline will involve 

capturing raw images from a sensor via real-time CSI interface, 

followed by ISP processing to extract RGB or NV12 images, 

followed by an optional lens-distortion correction for fish-eye 

lenses to provide a rectified image. This could branch to either 

human vision or machine vision pipeline which require image 

resizing and pre-processing before submitting the frame for deep-

learning based inference. The output of inference is visualized with 

some post-processing and this either sent to real-time HDMI/eDP 

display or encoded for storage or streaming. Every single operation 

described will be mapped to the most optimal and available 

accelerator which basically splits the operations over multiple 

cores. A designated host core constructs this signal-chain to 

manage the real-time data and orchestrate multiple accelerators to 

get the desired output. The key aspect here is to build an optimal 

dataflow without copying image buffers between multiple compute 

cores. Each compute core might be operating at different 

frequencies and it becomes challenging to keep each producer-

consumer pair adequately balanced to meet use-case performance 

goals.  

OpenVx is a standard designed by the Khronos group to help 

orchestrate varying computer-vision functions as an acyclic graph. 

Figure 2 illustrates a typical OpenVx application graph which 

realize such inference use-case. The host core would construct a 
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single graph comprising of multiple “nodes”, where each node 

represents an imaging or vision operation. A node is an 

instantiation of a “kernel” which could either run on the same host 

core or a remote target. The target kernel would in-turn call a low-

level driver to interface with an accelerator. TI’s OpenVx 

implementation optimizes the signaling and data-buffer exchange 

between these remote targets. While it helps abstract and simplify 

multiple aspects of multicore processing, it still requires the 

application developer to understand some coarse grain details of 

what the framework offers to build an optimized graph. It 

particularly gets challenging when graphs have to be intersected at 

multiple intermediate points, mandating a solid understanding of 

the middleware and its minute nuances. This at times becomes an 

entry barrier for customers, the cost associated here being the time 

taken to comprehend the complexities of the middleware and also 

intricacies of the hardware to realize such simple usecases. 

 

Figure 2. Typical OpenVx based capture-inference-display pipeline illustrating 
single acyclic graph of interconnected nodes which remote core/accelerator 
processing 

Interplay of open source frameworks and SoC 
It is quite important for silicon vendors to abstract out both 

hardware and software complexities to help customers quickly 

evaluate their device. Making the programming model more 

familiar to a group of engineers who are exposed to a rich eco-

system of open source frameworks such as GStreamer, TFLite-RT 

[5], ONNX-RT [6], OpenCV [7] is the key to a successful design 

win. While many such open-source software stacks are offered off-

the-shelf to run on ARM cores, it’s the responsibility of the silicon 

vendors to provide hooks to their underlying accelerators and 

compute cores in a seamless way to differentiate performance.  

 

As shown in Figure 2, customers would love to build use-

cases with various type of inputs such as USB camera, smart 

camera with on-board ISP, RAW cameras which requires on-chip 

ISP, compressed video/image files from disk, compressed 

bitstreams streamed from a network etc. These varying inputs can 

be pre-processed and fed to a choice of popular deep-learning 

runtime such as TensorFlow-RT, ONNX-RT or TVM based Neo-

AI-DLR [7]. The output of inference would be post-processed to 

apply some visualization such as drawing boxes on detected 

objects using popular image processing/computer vision libraries 

such as OpenCV. This is followed by either displaying the results 

on the screen or encoding the same for storage or streaming. While 

providing this flexibility improves ease-of-use, this shouldn’t come 

at the cost of performance. This establishes as an interesting 

problem statement to offer open-source software stack with device 

entitlement class of performance.  

 

 

Figure 3. Flexible runtime configurations to select between multiple inputs, 

inference runtime and outputs 

Flexible analytics dataflows using GStreamer 
GStreamer is an industry popular streaming media framework 

which allows users to define flexible data pipelines mainly to 

perform audio and video processing. A typical GStreamer 

application comprises of multiple participating “elements” or 

“plugins”, each responsible for executing a certain function. They 

are typically connected back to back with data flowing from 

“source” to “sink”. The framework automatically negotiates the 

capabilities of each participating element, allocates buffer pools 

and starts the pipeline for streaming. Each element typically runs 

in its own thread and maintains data and control queues to 

maintain the order of processing but still function asynchronously. 

The GStreamer framework also provides a way to define “custom 

elements” by deriving its base classes. While GStreamer offers 

complete flexibility and ease-of-use, it can get extremely complex 

to design a “zero-buffer-copy” pipeline, especially when the 

participating elements are running on different cores/accelerators. 

TI’s OpTIFlow solution combines the best of both GStreamer and 

OpenVx to provide an optimal dataflow for camera based analytics 

enabling open-source stack to run efficiently on heterogeneous 

SoCs like TDA4V-Mid. 

 

Figure 4 illustrates OpTIFlow in action connecting the 

industry popular RaspberryPi v2 [8] raw camera with Sony’s 

IMX219 sensor to TDA4V-Mid’s ISP followed by a multi-scaler 

operation to feed the human vision and machine vision pipelines. 

The color-convert and pre-processing operation is offloaded to 

C66x DSP before calling a choice of open-source deep-learning 

runtime for inference on C71x DSP. The inference output is then 

post-processed using OpenCV on ARM and presented to the 

display in a windowed fashion using the multi-scaler hardware 

accelerator. 
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Figure 4. Typical GStreamer based capture-inference-display pipeline illustrating multiple compute cores and accelerator processing 

OpenVx based custom GStreamer elements 
 As shown in Figure5, a typical OpenVx node comprises of a 

host module and a target kernel. The host module is an interface 

between the application developer and compute module. The target 

kernel calls the low-level drivers to work with the hardware to get 

the desired functionality. The OpenVx frame work takes care of 

managing input and output buffers, handling IPC between host 

core and target core, maintaining desired cache coherency and 

ensuring data integrity [9]. A call to the host module is non-

blocking, the host can go to IDLE state or execute other tasks 

while the target kernel gets busy executing some function with the 

hardware. 

 

 
Figure 5. Interplay of OpenVx and GStreamer elements for flexibility and 
efficient processing 

Whereas a typical GStreamer element comprises of one or 

multiple sink and source pads attached to the body of the element. 

The pads are responsible for negotiating capabilities of the peer 

elements and manage data buffer pools between the elements. The 

body of the element performs a desired function. This function can 

either be executed on the same host core or be offloaded to a 

remote core. The solution proposed in this paper, combines the 

best of both OpenVx nodes and GStreamer elements. While 

GStreamer elements provides the flexibility of running them as 

independent threads, the OpenVx node is used to offload 

efficiently to the remote target. Figure 5 also show how a 

GStreamer element can call an OpenVx node. Each element 

creates one-graph-one-node pipeline as opposed to one-graph-

multiple-nodes in the OpenVx case. The buffers exchanged 

between sink and source pads are passed as-is to OpenVx input 

and output buffers respectively. The OpenVx framework takes care 

of passing the buffers to the remote targets by applying the 

appropriate cache operations.  

 

 
Figure 6. Extending GStreamer base classes to create custom base classes 
to handle zero-buffer-copy between elements. Template classes to handle 
different input, output scenarios 

 

As the top-level interface is GStreamer we need to extend the 

GStBufferPool base class to create custom classes which help 

allocate buffers in the common pool exchanged between host and 

target cores, and also help glue the buffer data-structures between 

GStreamer and OpenVx nodes. As shown in Figure 6 we created 3 

derived classes GstImageBufferPool, GstTensorBufferPool and 

GstRawImageBufferPool, to help transact with vx_image, 

vx_tensor and tivx_raw_image OpenVx data structures. These 

extended classes use the OpenVx based memory allocator to create 
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the buffer pool negotiated between custom peer elements. This is 

how zero-buffer-copy is achieved. To handle different 

combinations of input and outputs we also extend the 

GstBaseTransform class to create different extended classes to 

handle single-input-single-output, single-input-multiple-output, 

multiple-input-single-output usecases. 

 

Batch processing with custom GStreamer 
elements 
 

While OpenVx based graphs have multiple nodes in a single 

graph, the custom GStreamer elements create multiple graphs with 

a single node. This configuration provides flexibility but it 

increases the number of interrupts issued to host core especially in 

the muti-channel scenarios. Each participating element issues a 

completion interrupt for every frame processed. If a pipeline 

comprises of M elements and we process N channels then host 

core will receive MxN elements. OpenVx graphs can handle 

multiple channels by creating vxObjectArray [10] which enables 

batch processing. Standard GStreamer elements does not provide 

an option to perform batch processing, so we created new 

GstTiovxMux and GstTiovxDeMux elements as illustrated in 

Figure 7 which helps batch multiple inputs and take advantage of 

OpenVx ObjectArrays under the hood. Peer elements which 

understand batch processing can be linked together to construct an 

end-to-end chain. This way we potentially reduce the number 

interrups from MxN to Mx1. If there are any standard elements in-

between then it should be guarded between a pair of demux and 

mux elements as defined by the usecase. 

 

 
 
Figure 7. Interplay of OpenVx and GStreamer elements for flexibility and 
efficient processing 

DLInferer Gstreamer element to support multiple 
DL runtime 
 

OpTIFlow also supports working with popular deep-learning 

runtime framework such as TensorFlow-RT, ONNX-RT and TVM 

based Neo-AI-DLR. In construction the design is similar to custom 

GStreamer elements. We have defined a DLInferer class which 

abstracts different runtimes. Users can provide a pre-imported 

models to the desired runtime which gets either completely or 

partially offloaded to the DL accelerator and fall back to host 

ARM for unsupported layers [12]. The backend to these runtimes 

is again an OpenVx node which runs on C71x DSP target. Tensor 

objects are exchanged between the custom GStreamer elements 

and DL runtime without any buffer copies as the memory is again 

allocated from the same OpenVx allocator. 

 

 

 

 

 

Results 
Table I below shows total time taken to execute a GStreamer 

pipeline with custom elements in milliseconds(ms) followed by a 

breakup of inference time taken by the DLInferer element. The 

table also shows A72 host core loading. Mostly the processing on 

the host-core is attribute to post-processing using OpenCV with 

color-conversion and dl-pre-processing offloaded to C66x DSP. 

The results are discussed for 4 different DL networks executed on 

ONNX-RT and TFLite-RT. 

Table I: Performance summary for executing different DL networks 

Model name FPS  Total 
Time (ms) 

Inference 
Time (ms)  

A72 
(%)  

ONR-CL-6360-
regNetx-200mf 

30.9 33.07 2.00 15.63 

ONR-OD-8220-
yolox-s-lite-
mmdet-coco-
640x640 

30.5 33.13 11.02 14.39 

TFL-CL-0000-
mobileNetV1-
mlperf 

30.7 33.11 1.01 14.89 

TFL-OD-2020-
ssdLite-mobDet-
DSP-coco-
320x320 

30.7 33.16 5.01 11.80 

 

Table II provides DDR bandwidth consumption in total to 

execute an OpTIFlow pipeline. The TDA4V-Mid SoC is paired 

with 4GB LP-DDR4 clocked at 4266MTS. Which at 50% 

efficiency at room temp provides about 8.5GB/s bandwidth. The 

data shown here is to execute a pipeline discussed earlier with Rpi 

v2 camera followed by ISP, pre-processing and one of the DL 

network shown. This is then followed by post-processing, 

windowing and sent to display 

Table II: DDR throughput summary  

Features DDR Read 
BW (MB/s) 

DDR Write 
BW (MB/s) 

DDR Total 
BW (MB/s) 

ONR-CL-6360-
regNetx-200mf 

1504 604 2108 

ONR-OD-8220-
yolox-s-lite-
mmdet-coco-
640x640 

1882 756 2578 

TFL-CL-0000-
mobileNetV1-
mlperf 

1464 603 2067 

TFL-OD-2020-
ssdLite-mobDet-
DSP-coco-
320x320 

1553 594 2147 

113-4
IS&T International Symposium on Electronic Imaging 2023

Autonomous Vehicles and Machines 2023



 

 

Table III shows further break up of tasks running on remote 

cores like C66x, C7x DSP and participating accelerators like MSC 

(multi-scaler) and ISP (for processing raw image from Rpiv2 

camera) 

Table III: Various target core, accelerator loading 

Model name C71x 
DSP  
(%) 

C66x 
DSP 
(%) 

VISS 
HWA 
(%)  

MSC 
HWA 
(%)  

ONR-CL-6360-
regNetx-200mf 

6 26 9.95 22.33 

ONR-OD-8220-
yolox-s-lite-
mmdet-coco-
640x640 

32 79 9.97 21.52 

TFL-CL-0000-
mobileNetV1-
mlperf 

5 27 9.81 22.36 

TFL-OD-2020-
ssdLite-mobDet-
DSP-coco-
320x320 

16 34  24.72 

Conclusion 
In this paper we have discussed the merits of using both 

OpenVx and GStreamer based approaches and how it is important 

to balance flexibility, ease-of-use and performance for analytics 

use-cases. While OpenVx dataflows optimizes execution using 1-

graph-M-nodes, GStreamer based approach achieves the same 

using M-graph-M-nodes. The performance differences between the 

both approaches are negligible as maximum tasks are offloaded to 

a heterogeneous set of compute cores and accelerators. TI’s 

OPTIFlow is offered currently on TDA4V-Mid class of device but 

the same stack will be compatible with other spectrum of analytics 

devices with similar hardware profiles. 
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