The light-field display (LfD) radiance image is a raster description of a light-field where every pixel in the image represents a unique ray within a 3D volume. The LfD radiance image can be projected through an array of micro-lenses to project a perspective-correct 3D aerial image visible for all viewers within the LfDs projection frustum. The synthetic LfD radiance image is comparable to the radiance image as captured by a plenoptic/light-field camera but is rendered from a 3D model or scene. Synthetic radiance image rasterization is an example of extreme multi-view rendering as the 3D scene must be rendered from many (1,000s to millions) viewpoints into small viewports per update of the light-field display. However, GPUs and their accompanying APIs (OpenGL, DirectX, Vulkan) generally expect to render a 3D scene from one viewpoint to a single large viewport/framebuffer. Therefore, LfD radiance image rendering is extremely time consuming and compute intensive. This paper reviews the novel, full-parallax, BowTie Radiance Image Rasterization algorithm which can be embedded within an LfD to accelerate light-field radiance image rendering for real-time update.
Thomas L. Burnett, Justin Halter, Justin Jensen, "BowTie rasterization for extreme multi-view light-field displays" in Electronic Imaging, 2023, pp 169-1 - 169-6, https://doi.org/10.2352/EI.2023.35.14.COIMG-169