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Abstract 
Radiance image rasterization is the process by which a 3D 

scene is rendered into a light-field radiance image.  Every pixel in 

the light-field radiance image represents a unique ray passing 

through a 3D volume of space.  Radiance image rasterization is an 

example of extreme multi-view rendering as the 3D scene must be 

rendered from many points of view (1000s to millions) into small 

viewports per update of the light-field display.  However, GPUs and 

their accompanying APIs (OpenGL, DirectX, Vulkan) generally 

expect to render a scene from one point of view to a single large 

viewport/framebuffer.  Therefore, light-field radiance image 

rendering is extremely time consuming and a compute intensive 

serial rendering process.  This paper reviews the full-parallax, 

BowTie Radiance Image Rasterization process and builds upon the 

concept of a Multi-view Processing Unit (MvPU) embedded within 

the light-field display architecture in order to accelerate light-field 

radiance image rendering. 

Introduction 
Emerging light-field display (LfD) technology provides a 

glasses-free 3D aerial image with the depth cues expected by the 

human visual system; therefore, the visual experience for the 

observer is natural and without nausea-inducing artifacts.  A light-

field can be described as a set of rays that pass through a 3D volume 

of space.  The light-field radiance image (example radiance images 

can be seen in Figure 9) is a raster description of a light-field where 

every pixel in the image represents a unique ray within that 3D 

volume.  The light-field display radiance image can be projected 

through an array of Hogel (Holographic Element) micro-lenses to 

reconstruct a perspective-correct 3D aerial image visible for all 

viewers within the display’s projection frustum.   Within this paper, 

the term Hogel will be used to represent both a micro-lens and the 

accompanying micro-image.  The micro-image consists of all the 

perspective rays that pass through that point spot on the light-field 

(hogel) image plane; the micro-lenses are used to angularly 

distribute the light over a projection field-of-view (FoV). 

Light-field radiance image rendering is an example of extreme 

multi-view rendering where a scene must be rendered from many 

(thousands to millions) viewpoints per update of the display.  While 

a GPU can be used to generate a light-field radiance image, the 

traditional GPU raster pipeline expects to render a scene from a 

single viewpoint per dispatch of the scene geometry.  Therefore, the 

burden of radiance image rendering falls to the host 3D application, 

which must understand the exact nature of the LfD’s projection 

system and render all the appropriate views sequentially.  For every 

view rendered, the host application sets the camera view/projection 

matrix, the viewport to render to, and redispatches the scene’s render 

commands.  As a result, radiance image rendering can require 

exceedingly long computation times whereby the LfD is 

unresponsive in the meantime.  Therefore, the update rate of the LfD 

and thus the power required to render animated content is a factor of 

the render algorithm, scene complexity and the number of scene 

dispatches (renders/views) that a computation engine incurs to 

update a display at the desired framerate. 

 

 
FIGURE 1.  HOGEL IMAGE PLANE WITH 3D MODEL AND 

BOWTIE FRUSTUM 

Related Work 
In [1] on rasterizing synthetic radiance images, both the Double 

Frustum [3] and Oblique Slice and Dice full-parallax, light-field 

radiance image rasterization algorithms were reviewed.  The major 

difference between the two algorithms is the order in which the 4D 

light-field is decomposed into 2D render passes.  The Double 

Frustum algorithm renders hogel micro-images using two 

independent back and front perspective frustums.   The Oblique 

Slice and Dice algorithm renders directions using sheared 

orthographic projections; after which, every oblique pixel must be 

transformed/swizzled and/or sampled into hogel micro-images.   

It was noted in those papers that a custom rasterization pipeline 

specifically designed for extreme multi-view rendering could 

improve full-parallax, radiance image rendering performance.  This 

paper reviews a custom BowTie renderer designed to take advantage 

of performance optimizations inherent in extreme multi-view, full-

parallax, synthetic radiance image rendering.  The BowTie radiance 

image renderer uses a single bowtie/pinhole projection matrix and 

inverts the triangle/view rendering priority.   Therefore, this paper 

builds upon the concept of a Multi-view Processing Unit (MvPU) 

(introduced in [1]), a GPU like device embedded in the LfD 

architecture and tailored specifically to the rendering needs of a 

large format 3D light-field display. 

Double Frustum Epsilon Region 
The Double Frustum algorithm has one notable drawback, at 

least when implemented in OpenGL with the traditional perspective 

camera matrix.   In OpenGL, the perspective camera matrix cannot 

be defined with a near plane on or behind the camera origin.  Rather, 

the near plane is defined at a positive offset, with expectation that 

the viewport is mapped to the near plane.   
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As shown in Figure 2, if the front and back frustum definitions 

share the same origin, then there exists a small region between the 

two frusta near planes that is not seen by either camera: the Epsilon 

region.  Portions of triangles that pass through the Epsilon region 

are not rendered, resulting in un-rasterized portions of the hogel 

micro-image.  The noticeable solution is to back offset both cameras 

so that the near planes are co-planar and keep the near plane offset 

small [3].  This does alleviate most of the hogel corruption but is 

still not a perfect solution.  

 
FIGURE 2.  THE DOUBLE FRUSTUM EPSILON REGION; A 

SOURCE OF HOGEL CORRUPTION 

Figure 3A sets up a model where triangles pass through the 

coplanar near planes of a Double Frustum camera pair which results 

in the un-rasterized corner portions of the 5x5 hogel radiance image 

shown in Figure 3B.  Figure 3B was rendered using the Double 

Frustum algorithm, with coplanar near planes on a GPU in OpenGL.  

Figure 3C was rendered with the Double Frustum algorithm in 

FoVI3D’s MvPU simulator using the same camera definitions.  For 

clarity, the MvPU simulator clears the background to an uncommon 

shade of pink to better highlight hogel corruption and/or un-

rasterized/un-shaded pixels.  Figure 3D was rendered using the 

BowTie algorithm within the MvPU simulator and shows the corner 

hogels correctly rendered as the BowTie projection has no Epsilon 

region.   

BowTie Radiance Image Rasterization 
The BowTie hogel camera uses a perspective projection, which 

can be defined with a positive far plane in front, and a negative near 

plane behind.  However, the BowTie frustum can also be defined 

without either a near or far plane as shown in Figure 4 and which 

also implies that the four remaining clip planes define an infinite 

fore and aft hourglass or “bowtie” frustum.  As such, the BowTie 

frustum is essentially an invertible pinhole projection, bisected by 

the hogel image plane (Figure 1).  

Since the BowTie frustum planes have different normals above 

and below the image plane, the plane equations used for triangle 

culling/clipping operations are different for the front and back 

halves of the BowTie frustum.  This can be accounted for in code, or 

by use of two sets of plane equations, a set for the front frustum and 

another set for the back frustum.  The hogel image plane is itself a 

plane whose plane equation can determine whether clipping should 

occur by use of the front, back or both sets of clipping planes.  This 

test can be done once per triangle (per object) per render cycle and 

the result cached for subsequent BowTie triangle/frustum clipping 

operations.   

 
FIGURE 3.  AN EXAMPLE OF DOUBLE FRUSTUM HOGEL 

CORRUPTION; THE BOWTIE RASTERIZATION RENDERS THE 

RADIANCE IMAGE CORRECTLY 

FoVI3D defines the hogel camera (model) matrices facing up 

along the positive y-axis with the corresponding up-vector along the 

negative z-axis; the right-vector lies along the positive x-axis.  

Therefore, the hogel plane is defined on the x-z plane, normalized, 

and centered between (-0.5, -0.5) and (0.5, 0.5).  Hogels are 

numbered from left to right, top to bottom, an also assigned a center 

coordinate in normalized viewport space.  The 2D array of hogel 

camera matrices and accompanying viewport centers that define the 

radiance image rendering view definitions is referred to as the Hogel 

Plane Definition (HPD); the HPD is unique to the physical LfD 

requirements, i.e. number of hogels, number of rays per hogel, etc. 

 

 
FIGURE 4.  BOWTIE PROJECTION MATRIX 

The View Volume Transform (VVT) is a 4x4 transform matrix 

that defines the 3D cuboid volume in world space to be rendered.   

In other words, the VVT defines the 3D cuboid volume within a 

scene that a volumetric, light-field, or holographic display projects.   

Multiplying the hogel camera matrices defined within the HPD by 

the VVT transforms the hogel cameras into world space.  Figure 9 
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shows the VVTs rendered as a transparent green cuboid, bisected by 

the hogel plane rendered in red. 

Order of Operations: View vs. Triangle Major 
Rendering 

The traditional render system sets the viewport and then 

renders all the triangles from all the scene objects onto it.  This is 

view-major rendering.   If there are many objects in a scene (as there 

often are) with unique vertex lists, textures, materials, and so forth, 

then there is the potential that the same object data is being 

constantly swapped in and out of the processor cache, possibly on a 

per-view or per-hogel basis. 

As the view-triangle relationship is essentially a 2D array of 

operations, then processing the triangles against views may make 

better use of the cache and increase rendering efficiency.   Therefore, 

theoretically, an object’s definition is loaded once per render cycle 

into processor cache and an object’s triangles are rendered in turn 

against all the views.   This is triangle-major rendering.   

The order of the operation for the Double Frustum, Oblique 

Slice and Dice and BowTie radiance rendering algorithms is outlined 

in Figure 5.   In addition, each line in the outline is annotated with a 

processing unit label (C: CPU, G: GPU and M: MvPU) in which the 

processing typically occurs.  

 
FIGURE 5.  ALGORITHM ORDER OF OPERATION 

For instance, “For Every Object” refers to the dispatching of 

render commands from a CPU, while “For Every Triangle” refers to 

the processing of a vertex list by a GPU.   It should be noted that 

while “Pixel Swizzling” can occur on a GPU, large radiance images 

may require hundreds of gigabytes of RAM in which case pixel 

swizzling might be better served by a CPU.   Also “Pixel Swizzling” 

may be a completely post-render process in which all the oblique 

views are rendered first, then a massive pixel swizzling or sampling 

operation ensues.   Lastly, the application of 2D calibration 

coefficients that account for LfD manufacturing and assembly 

tolerances can only be executed against fully rendered/assembled 

hogel micro-images and are unique to each display.   Therefore, 2D 

calibration corrections are best applied in the LfD’s micro-image 

display drivers and not when the hogels are initially rendered. 

 

Object Culling 
Object culling is traditionally executed by the host application 

against the application’s camera frustum to alleviate issuing 

unnecessary graphics commands for non-visible geometry.   As the 

host application camera is not the same as those defined within the 

HPD, the host application cannot cull objects against its own 

camera.  In addition, the host application cannot cull objects against 

the VVT either as the projection frustums derived from the VVT can 

also extend outside the VVT’s cuboid definition as is the case with 

Double or BowTie camera frustums of the HPD.  

As the hogel camera frustums are defined within the HPD, the 

first real processing stage of a radiance image rendering pipeline is 

to determine which hogel BowTie frustums intersect each object.  

Again, traditionally this is done by comparing an object’s bounding 

volume for intersection with a camera frustum.   However, when the 

HPD may contain millions of camera frustums, this can be an 

expensive task.  It is more efficient to transform the object’s 

maximum and minimum bounding volume extents into the HPD 

space and then reverse cast the Bowtie frustum edges from the 

transformed extents onto the normalized hogel image plane (Figure 

6).  The resulting intersections encompass the subset of hogel 

frustums that intersect the object’s bounding volume.  Limiting the 

processing of objects within that narrower subset of hogels speeds 

up rendering significantly.  

 
FIGURE 6. BOUNDING VOLUME/HPD INTERSECTION TEST 

USING REVERSE FRUSTUM PROJECTION 

BowTie Clipping 
The subset of hogels that intersect a particular triangle can also 

be calculated in a similar manner.  Here, the vertices of the triangle 

are transformed into HPD space and the frustum edges cast from the 

vertices onto the hogel image plane, isolating the subset of hogels 

whose frustums intersect that triangle.  This is shown in Figure 7. 

Model Space Triangle Clipping 
The traditional rendering pipeline expect a triangle’s vertices 

to be multiplied by the model-view-projection (MVP) matrix before 

being submitted to the rasterizer for clipping/culling in unity clip 

space.  However, this implies at least 3 [4x4] matrix by [4x1] vertex 

multiples (~48 multiplies) per triangle per hogel within the 

identified hogel plane sub-region. Note: Using the Double Frustum 

algorithm is twice as bad; the front and back frustums are defined 

separately and must be evaluated separately, which can be a 

significant number of multiplications (and additions) just to see if a 

triangle is visible to an individual hogel frustum.   Hogel frustum 

definitions can be narrow, resulting in many culled or clipped 

triangles.  Therefore, the BowTie renderer clips in model space to 

avoid many unnecessary triangle vertex transforms.   
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As noted in the excellent Fast Extraction of Viewing Frustum 

Planes from the World-View-Projection Matrix paper [6], deriving 

clipping planes from the MVP matrix allows for clipping in model 

space.  This implies, though, that on a per-object basis, the 

intersecting HPD subregion of hogels would need to be transformed 

into the object’s model space to determine the necessary clipping 

planes. 

 

 
FIGURE 7.  TRIANGLE/HPD INTERSECTION TEST USING 

REVERSE FRUSTUM CAST 

Shift Clipping 
However, as all the hogels are on a plane and have the same 

orientation, only one hogel needs to be transformed into the object’s 

model space; the remaining hogel frustum planes can be calculated 

merely by shifting one set of transformed hogel frustum planes with 

a few scaled additions.  Therefore, as part of the HPD, one set of 

hogel frustum planes can be defined at the origin and transformed 

into model space when a new object enters the pipeline.  Subsequent 

hogel-specific frustum planes are then derived through inexpensive 

addition operations and cached when a hogel frustum requires an 

intersection test with the first triangle of an object.  In this manner, 

hogel frustum planes are efficiently calculated once per object 

render and only when necessary. 

Smart Clipping 
Clipping algorithms such as Sutherland-Hodgman Clipping [7] 

use the “distance point to plane” dot product calculation to 

determine whether a point is behind, on or in front of a plane.  

Therefore, during the Sutherland-Hodgman edge clip operation the 

cardinal direction of where the points lie relative to the frustum can 

be recorded and used to prevent future hogel frustum intersection 

tests. 

Figure 8 highlights this concept where a triangle is far to the 

left of the hogel plane center.  If the center-most hogel was tested 

against this triangle, the result would be a fully culled triangle and a 

flag/bit mask indicating that all the triangle vertices were to the left 

(or west).  Therefore, no hogel frustum in the same up/down 

(North/South) column or any frustum to the right (east) would 

require testing.   

Or, instead of indexing through the HPD using indices 

calculated by the reverse frustum cast, the clip direction could be 

used to binary search through the HPD to find a valid triangle 

intersection. 

The order of frustum plane testing might have an impact on 

performance and some examples of Sutherland-Hodgman show 

clipping to the left, then right, then up, down, and so on.  It is more 

beneficial to clip left, up, right, and then down as to more quickly 

derive the appropriate direction to search next. 

Lastly, if the hogel frustum plane equations are normalized, 

then the direction vector magnitude is the distance to that vertex 

from the frustum center.  This information can be used to directly 

index the next hogel in the HPD, negating a search entirely. 

 
FIGURE 8.  BOWTIE SMART CLIPPING 

The Multi-view Processing Unit (MvPU) 
Unlike a traditional GPU which is tightly bound to a host CPU 

and application, the conceptual MvPU is intended to reside within 

the 3D LfD hardware, relieving the host application of render 

responsibility for unique display architectures.  The MvPU renders 

all the views in parallel from a single dispatch of the geometry from 

the host application and writes directly to the display back-buffers 

within the projection subsystem of the LfD.  This allows the host 

application to be implemented without regard of the LfD hardware 

or the LfDs unique projection requirements. 

MvPU Simulator 
FoVI3D’s Multi-view Processing Unit (MvPU) simulator is a 

C/C++ raster pipeline simulator developed to research means to 

render light-field radiance images effectively.  C/C++ was chosen 

to implement the research pipeline merely to ensure maximum 

flexibility over the render pipeline architecture and for the ease of 

debugging.  In addition, since the BowTie algorithm cannot be 

implemented in any traditional graphics API (OpenGL, DirectX, 

etc), the only fair comparison in algorithm performance was to 

implement algorithms such as the Double Frustum and BowTie in a 

neutral language such as C/C++ where the variations of the 

algorithms could share as many stages, routines and classes as 

possible.  As such, any resulting gains are strictly the result of 

optimizations inherit to the algorithm.   It should also be noted that 

since the previously described BowTie radiance image rendering is 

more concerned with setting up view/frustum/triangle relationship 

and the effect of shared optimizations across the HPD, more modern 

shader stages such as the geometry or tessellation shaders were not 

considered for this rendering evaluation.   

The first stage of the MvPU raster pipeline consists of a 

scene/object dispatcher which iterates over objects within the scene 

and culls objects against the HPD using the reverse BowTie frustum 

projection test.  Therefore, the inputs to the MvPU pipeline are the 

scene description, a VVT and a HPD.   For every object that 

intersects the HPD, a subset of HPD hogel indices is forwarded to 

the second pipeline stage.   

The second pipeline stage is an object triangle dispatcher where 

triangle vertices are culled by the reverse BowTie frustum 

projection/HPD test.  The resulting list of HDP indices are the subset 

of hogel frustums that intersect the triangle.  The next stage is to clip 

the triangle against the subset of hogel frustums.  Surviving 
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triangles/polygons are then passed to the final stage, the fragment 

shader.   

Algorithms and Optimizations Implemented within the 

MvPU C/C++ Simulator 
The two primary algorithms implemented and tested were the 

Double Frustum and BowTie radiance image renderers.   Three 

flavors of the BowTie renderer were implemented to test the 

previously described culling/clipping optimizations. The four tested 

algorithm implementations are described below: 

Double Frustum 

Within the MvPU simulator, the Double Frustum algorithm 

was implemented as it would be implemented within an OpenGL 

render pipeline and is therefore a view-major process where the 

front frustum and the back frustums are processed separately into 

the same viewport.  There are no common camera/view 

optimizations implemented as each hogel frustum must be tested 

individually without shared knowledge from sibling hogels.  

Therefore, all scene triangles are tested against all Double Frustum 

hogels.  

Note: One huge and notable Double Frustum implementation 

exception is that as a completely C/C++ simulator, the MvPU 

simulator does not simulate the cost of dispatching rendering 

commands from the host CPU to a GPU on a per hogel basis.   

Ideally, this would not be ignored as cost of dispatching rendering 

commands per view is not insignificant. 

Basic BowTie 

The Basic BowTie algorithm was implemented as a triangle-

major process and clipping is done in model space.  One BowTie 

frustum is defined per hogel, which reduces the number of triangles 

tests required by the Double Frustum algorithm.  Each triangle is 

first tested against the hogel image plane to determine which sides 

of the bowtie need to be evaluated.  This information is used to 

preselect which halves of the BowTie require processing for the 

entire HPD.  No additional optimizations were implemented to 

directly compare the order/magnitude of operations with the Double 

Frustum algorithm; therefore, all scene triangles are tested against 

all BowTie hogel frustums. 

Binary Search/Fill BowTie 

The Binary Search/Fill BowTie builds upon the Basic BowTie 

algorithm by using a binary search to quickly find a first triangle 

intersecting frustum.  The search starts with the center most hogel 

in the HPD.  When an intersection is discovered, the binary search 

is halted and neighboring hogels are scheduled on a stack for future 

processing; this is repeated until there are no more hogels to 

schedule and the triangle has been processed against all intersecting 

BowTie hogel frustums. 

Intersection Map BowTie 

The Intersection Map BowTie calculates the HPD sub-region 

for triangle processing by reverse frustum projection from the 

triangle vertices onto the hogel image plane in HPD space. 

Test Models and Radiance Image Rendering Testing 
All four algorithms for this evaluation had Object Culling 

disabled and all use the exact same triangle rasterizer and fragment 

shader.  Therefore, this review is exclusively about the order and 

cost of the triangle vertex processing.  The models shown in Figure 

9 and described below were used for this radiance image rendering 

evaluation: 

 Utah Teapot – 15,704 triangles 

The Utah Teapot is a standard polygonal model used for 

rendering and graphics evaluations.  It is a low-complexity 

(low triangle count) model whose vertices were generated 

through parametric equations and is well structured.  

 Gears – 101,586 triangles 

Gears is a moderate-complexity model (6x triangles of Utah 

Teapot) and is representive of a model created by a 3D 

graphics artist within a 3D modeling package.    

 DyingGaul – 379,526 triangles 

DyingGaul is a high complexity model (>24x triangles of Utah 

Teapot) polygonized from a high-resolution scan model. 

Four 30x30 hogel HPDs were constructed using 30°, 45°, 60° 

and 90° FoV frustums to highlight the effect of FoV on algorithm 

performance.  The hogel micro-image resolution was 60x60 pixels 

on a 64x64 pixel center-to-center pitch, resulting in 1920x1920 pixel 

radiance images. Bear in mind, this is a very small radiance image 

and only constructed for this evaluation. 

Testing and Test Results 
The MvPU simulator and radiance image rendering evaluations 

were conducted on a single thread of an Intel i7-4790 4.00 GHz CPU 

to directly compare algorithm performance.  The radiance images 

generated by the Double Frustum algorithm were considered the 

reference images, and subsequent rendering tests were compared to 

these images for validation by taking the absolute difference 

between the rendered images.   

Upfront, there are two analyses to consider in this evaluation.  

The first is the performance of the Double Frustum versus Basic 

BowTie radiance image renderers.   The second is the effect of 

globally culling and clipping triangles within the BowTie renderer 

either by searching for valid hogel frustum intersections or by 

calculating a triangle’s bounding frustum intersection region. 

Double Frustum Vs. BowTie Dispatch & Vertex Processing Time 

Summary 

Figure 9 summarizes the total time spent within the dispatch 

and vertex processing stages of the Double Frustum and Basic 

BowTie radiance image rasterizers for all the tests and models, and 

highlights the benefits of rasterizing a single, 4-plane bowtie 

frustum with triangle major rendering over two independent 6-plane 

defined frustums with view major rendering.  The largest BowTie 

rendering gain was noticed within the 30° Gears test which was 8.2x 

faster than the Double Frustum renderer.  The smallest BowTie 

rendering gain was 4.7x within the 90° Dying Gaul test.  

Basic BowTie Vs. BowTie Binary Search/Fill Vs. BowTie 

Intersection Map Triangle/Frustum Culling and Clipping Summary 

Figure 9 shows the performance of the various BowTie 

triangle/frustum culling and clipper processors that were evaluated.  

As expected, the search/fill and intersection maps enabled the 

BowTie algorithm to accelerate triangle/frustum culling and clipping 

anywhere from 2x to 28x faster than the Basic BowTie renderer.   In 

all the tests, the intersection map implementation outperformed the 

binary search/fill implementation.  The amount of performance gain 

was relative to the FoV, with the largest gains occurring with narrow 

FoV where more triangles are discarded upfront. 

Conclusion 
The traditional render pipeline is intended to render from a 

single viewpoint onto a single, large viewport. GPUs and the 

accompanying APIs are well suited for this purpose.  Light-field 

radiance image rendering requires rendering from many viewpoints 

onto small viewports, shifting the rendering processing burden from 

the back-end rasterizer and fragment shader to the front-end vertex 

processor.   In addition, radiance image rendering burdens the host 
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application with managing all the viewpoints/viewports specific to 

an LfD architecture, binding the host application to that LfD 

architecture.   

In the Heterogeneous Display Environment (HDE), the display 

is responsible for rendering the views it requires for its unique 

projection requirements.  While it can be argued that an array of PCs 

can be allotted for this purpose, the Size, Weight, Power and Cost 

(SWaP-C) of a PC cluster is extremely high for a specific and 

singular rendering purpose.   

As demonstrated in this evaluation, a custom multi-view render 

pipeline for an LfD can expect significant performance gains by 

reordering triangle dispatch and exploiting triangle optimizations 

common to a 2D array of Bowtie frustums.  In addition, by moving 

radiance image rendering into the LfD, the enormous number of 

pixels required for a deep 3D visual experience can be written 

directly to the LfD micro-display back buffers, forgoing all the 

cabling, protocols, space, power, and complexity of an external 

cluster. 

Next Steps 
The C/C++ MvPU simulator has been a useful tool for the 

research and development of the BowTie algorithm for rendering 

radiance images more efficiently.   The next phase of research is to 

implement the BowTie renderer for a GPU in CUDA and exploit the 

extreme parallelism capabilities of a modern GPU.
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