

BowTie Rasterization for Extreme Multi-view Light-field

Displays

Thomas Burnett, Justin Halter, Justin Jensen

Abstract
Radiance image rasterization is the process by which a 3D

scene is rendered into a light-field radiance image. Every pixel in

the light-field radiance image represents a unique ray passing

through a 3D volume of space. Radiance image rasterization is an

example of extreme multi-view rendering as the 3D scene must be

rendered from many points of view (1000s to millions) into small

viewports per update of the light-field display. However, GPUs and

their accompanying APIs (OpenGL, DirectX, Vulkan) generally

expect to render a scene from one point of view to a single large

viewport/framebuffer. Therefore, light-field radiance image

rendering is extremely time consuming and a compute intensive

serial rendering process. This paper reviews the full-parallax,

BowTie Radiance Image Rasterization process and builds upon the

concept of a Multi-view Processing Unit (MvPU) embedded within

the light-field display architecture in order to accelerate light-field

radiance image rendering.

Introduction
Emerging light-field display (LfD) technology provides a

glasses-free 3D aerial image with the depth cues expected by the

human visual system; therefore, the visual experience for the

observer is natural and without nausea-inducing artifacts. A light-

field can be described as a set of rays that pass through a 3D volume

of space. The light-field radiance image (example radiance images

can be seen in Figure 9) is a raster description of a light-field where

every pixel in the image represents a unique ray within that 3D

volume. The light-field display radiance image can be projected

through an array of Hogel (Holographic Element) micro-lenses to

reconstruct a perspective-correct 3D aerial image visible for all

viewers within the display’s projection frustum. Within this paper,

the term Hogel will be used to represent both a micro-lens and the

accompanying micro-image. The micro-image consists of all the

perspective rays that pass through that point spot on the light-field

(hogel) image plane; the micro-lenses are used to angularly

distribute the light over a projection field-of-view (FoV).

Light-field radiance image rendering is an example of extreme

multi-view rendering where a scene must be rendered from many

(thousands to millions) viewpoints per update of the display. While

a GPU can be used to generate a light-field radiance image, the

traditional GPU raster pipeline expects to render a scene from a

single viewpoint per dispatch of the scene geometry. Therefore, the

burden of radiance image rendering falls to the host 3D application,

which must understand the exact nature of the LfD’s projection

system and render all the appropriate views sequentially. For every

view rendered, the host application sets the camera view/projection

matrix, the viewport to render to, and redispatches the scene’s render

commands. As a result, radiance image rendering can require

exceedingly long computation times whereby the LfD is

unresponsive in the meantime. Therefore, the update rate of the LfD

and thus the power required to render animated content is a factor of

the render algorithm, scene complexity and the number of scene

dispatches (renders/views) that a computation engine incurs to

update a display at the desired framerate.

FIGURE 1. HOGEL IMAGE PLANE WITH 3D MODEL AND

BOWTIE FRUSTUM

Related Work
In [1] on rasterizing synthetic radiance images, both the Double

Frustum [3] and Oblique Slice and Dice full-parallax, light-field

radiance image rasterization algorithms were reviewed. The major

difference between the two algorithms is the order in which the 4D

light-field is decomposed into 2D render passes. The Double

Frustum algorithm renders hogel micro-images using two

independent back and front perspective frustums. The Oblique

Slice and Dice algorithm renders directions using sheared

orthographic projections; after which, every oblique pixel must be

transformed/swizzled and/or sampled into hogel micro-images.

It was noted in those papers that a custom rasterization pipeline

specifically designed for extreme multi-view rendering could

improve full-parallax, radiance image rendering performance. This

paper reviews a custom BowTie renderer designed to take advantage

of performance optimizations inherent in extreme multi-view, full-

parallax, synthetic radiance image rendering. The BowTie radiance

image renderer uses a single bowtie/pinhole projection matrix and

inverts the triangle/view rendering priority. Therefore, this paper

builds upon the concept of a Multi-view Processing Unit (MvPU)

(introduced in [1]), a GPU like device embedded in the LfD

architecture and tailored specifically to the rendering needs of a

large format 3D light-field display.

Double Frustum Epsilon Region
The Double Frustum algorithm has one notable drawback, at

least when implemented in OpenGL with the traditional perspective

camera matrix. In OpenGL, the perspective camera matrix cannot

be defined with a near plane on or behind the camera origin. Rather,

the near plane is defined at a positive offset, with expectation that

the viewport is mapped to the near plane.

IS&T International Symposium on Electronic Imaging 2023
Computational Imaging XXI 169-1

https://doi.org/10.2352/EI.2023.35.14.COIMG-169
© 2023, Society for Imaging Science and Technology

As shown in Figure 2, if the front and back frustum definitions

share the same origin, then there exists a small region between the

two frusta near planes that is not seen by either camera: the Epsilon

region. Portions of triangles that pass through the Epsilon region

are not rendered, resulting in un-rasterized portions of the hogel

micro-image. The noticeable solution is to back offset both cameras

so that the near planes are co-planar and keep the near plane offset

small [3]. This does alleviate most of the hogel corruption but is

still not a perfect solution.

FIGURE 2. THE DOUBLE FRUSTUM EPSILON REGION; A

SOURCE OF HOGEL CORRUPTION

Figure 3A sets up a model where triangles pass through the

coplanar near planes of a Double Frustum camera pair which results

in the un-rasterized corner portions of the 5x5 hogel radiance image

shown in Figure 3B. Figure 3B was rendered using the Double

Frustum algorithm, with coplanar near planes on a GPU in OpenGL.

Figure 3C was rendered with the Double Frustum algorithm in

FoVI3D’s MvPU simulator using the same camera definitions. For

clarity, the MvPU simulator clears the background to an uncommon

shade of pink to better highlight hogel corruption and/or un-

rasterized/un-shaded pixels. Figure 3D was rendered using the

BowTie algorithm within the MvPU simulator and shows the corner

hogels correctly rendered as the BowTie projection has no Epsilon

region.

BowTie Radiance Image Rasterization
The BowTie hogel camera uses a perspective projection, which

can be defined with a positive far plane in front, and a negative near

plane behind. However, the BowTie frustum can also be defined

without either a near or far plane as shown in Figure 4 and which

also implies that the four remaining clip planes define an infinite

fore and aft hourglass or “bowtie” frustum. As such, the BowTie

frustum is essentially an invertible pinhole projection, bisected by

the hogel image plane (Figure 1).

Since the BowTie frustum planes have different normals above

and below the image plane, the plane equations used for triangle

culling/clipping operations are different for the front and back

halves of the BowTie frustum. This can be accounted for in code, or

by use of two sets of plane equations, a set for the front frustum and

another set for the back frustum. The hogel image plane is itself a

plane whose plane equation can determine whether clipping should

occur by use of the front, back or both sets of clipping planes. This

test can be done once per triangle (per object) per render cycle and

the result cached for subsequent BowTie triangle/frustum clipping

operations.

FIGURE 3. AN EXAMPLE OF DOUBLE FRUSTUM HOGEL

CORRUPTION; THE BOWTIE RASTERIZATION RENDERS THE

RADIANCE IMAGE CORRECTLY

FoVI3D defines the hogel camera (model) matrices facing up

along the positive y-axis with the corresponding up-vector along the

negative z-axis; the right-vector lies along the positive x-axis.

Therefore, the hogel plane is defined on the x-z plane, normalized,

and centered between (-0.5, -0.5) and (0.5, 0.5). Hogels are

numbered from left to right, top to bottom, an also assigned a center

coordinate in normalized viewport space. The 2D array of hogel

camera matrices and accompanying viewport centers that define the

radiance image rendering view definitions is referred to as the Hogel

Plane Definition (HPD); the HPD is unique to the physical LfD

requirements, i.e. number of hogels, number of rays per hogel, etc.

FIGURE 4. BOWTIE PROJECTION MATRIX

The View Volume Transform (VVT) is a 4x4 transform matrix

that defines the 3D cuboid volume in world space to be rendered.

In other words, the VVT defines the 3D cuboid volume within a

scene that a volumetric, light-field, or holographic display projects.

Multiplying the hogel camera matrices defined within the HPD by

the VVT transforms the hogel cameras into world space. Figure 9

169-2
IS&T International Symposium on Electronic Imaging 2023

Computational Imaging XXI

shows the VVTs rendered as a transparent green cuboid, bisected by

the hogel plane rendered in red.

Order of Operations: View vs. Triangle Major
Rendering

The traditional render system sets the viewport and then

renders all the triangles from all the scene objects onto it. This is

view-major rendering. If there are many objects in a scene (as there

often are) with unique vertex lists, textures, materials, and so forth,

then there is the potential that the same object data is being

constantly swapped in and out of the processor cache, possibly on a

per-view or per-hogel basis.

As the view-triangle relationship is essentially a 2D array of

operations, then processing the triangles against views may make

better use of the cache and increase rendering efficiency. Therefore,

theoretically, an object’s definition is loaded once per render cycle

into processor cache and an object’s triangles are rendered in turn

against all the views. This is triangle-major rendering.

The order of the operation for the Double Frustum, Oblique

Slice and Dice and BowTie radiance rendering algorithms is outlined

in Figure 5. In addition, each line in the outline is annotated with a

processing unit label (C: CPU, G: GPU and M: MvPU) in which the

processing typically occurs.

FIGURE 5. ALGORITHM ORDER OF OPERATION

For instance, “For Every Object” refers to the dispatching of

render commands from a CPU, while “For Every Triangle” refers to

the processing of a vertex list by a GPU. It should be noted that

while “Pixel Swizzling” can occur on a GPU, large radiance images

may require hundreds of gigabytes of RAM in which case pixel

swizzling might be better served by a CPU. Also “Pixel Swizzling”

may be a completely post-render process in which all the oblique

views are rendered first, then a massive pixel swizzling or sampling

operation ensues. Lastly, the application of 2D calibration

coefficients that account for LfD manufacturing and assembly

tolerances can only be executed against fully rendered/assembled

hogel micro-images and are unique to each display. Therefore, 2D

calibration corrections are best applied in the LfD’s micro-image

display drivers and not when the hogels are initially rendered.

Object Culling
Object culling is traditionally executed by the host application

against the application’s camera frustum to alleviate issuing

unnecessary graphics commands for non-visible geometry. As the

host application camera is not the same as those defined within the

HPD, the host application cannot cull objects against its own

camera. In addition, the host application cannot cull objects against

the VVT either as the projection frustums derived from the VVT can

also extend outside the VVT’s cuboid definition as is the case with

Double or BowTie camera frustums of the HPD.

As the hogel camera frustums are defined within the HPD, the

first real processing stage of a radiance image rendering pipeline is

to determine which hogel BowTie frustums intersect each object.

Again, traditionally this is done by comparing an object’s bounding

volume for intersection with a camera frustum. However, when the

HPD may contain millions of camera frustums, this can be an

expensive task. It is more efficient to transform the object’s

maximum and minimum bounding volume extents into the HPD

space and then reverse cast the Bowtie frustum edges from the

transformed extents onto the normalized hogel image plane (Figure

6). The resulting intersections encompass the subset of hogel

frustums that intersect the object’s bounding volume. Limiting the

processing of objects within that narrower subset of hogels speeds

up rendering significantly.

FIGURE 6. BOUNDING VOLUME/HPD INTERSECTION TEST

USING REVERSE FRUSTUM PROJECTION

BowTie Clipping
The subset of hogels that intersect a particular triangle can also

be calculated in a similar manner. Here, the vertices of the triangle

are transformed into HPD space and the frustum edges cast from the

vertices onto the hogel image plane, isolating the subset of hogels

whose frustums intersect that triangle. This is shown in Figure 7.

Model Space Triangle Clipping
The traditional rendering pipeline expect a triangle’s vertices

to be multiplied by the model-view-projection (MVP) matrix before

being submitted to the rasterizer for clipping/culling in unity clip

space. However, this implies at least 3 [4x4] matrix by [4x1] vertex

multiples (~48 multiplies) per triangle per hogel within the

identified hogel plane sub-region. Note: Using the Double Frustum

algorithm is twice as bad; the front and back frustums are defined

separately and must be evaluated separately, which can be a

significant number of multiplications (and additions) just to see if a

triangle is visible to an individual hogel frustum. Hogel frustum

definitions can be narrow, resulting in many culled or clipped

triangles. Therefore, the BowTie renderer clips in model space to

avoid many unnecessary triangle vertex transforms.

IS&T International Symposium on Electronic Imaging 2023
Computational Imaging XXI 169-3

As noted in the excellent Fast Extraction of Viewing Frustum

Planes from the World-View-Projection Matrix paper [6], deriving

clipping planes from the MVP matrix allows for clipping in model

space. This implies, though, that on a per-object basis, the

intersecting HPD subregion of hogels would need to be transformed

into the object’s model space to determine the necessary clipping

planes.

FIGURE 7. TRIANGLE/HPD INTERSECTION TEST USING

REVERSE FRUSTUM CAST

Shift Clipping
However, as all the hogels are on a plane and have the same

orientation, only one hogel needs to be transformed into the object’s

model space; the remaining hogel frustum planes can be calculated

merely by shifting one set of transformed hogel frustum planes with

a few scaled additions. Therefore, as part of the HPD, one set of

hogel frustum planes can be defined at the origin and transformed

into model space when a new object enters the pipeline. Subsequent

hogel-specific frustum planes are then derived through inexpensive

addition operations and cached when a hogel frustum requires an

intersection test with the first triangle of an object. In this manner,

hogel frustum planes are efficiently calculated once per object

render and only when necessary.

Smart Clipping
Clipping algorithms such as Sutherland-Hodgman Clipping [7]

use the “distance point to plane” dot product calculation to

determine whether a point is behind, on or in front of a plane.

Therefore, during the Sutherland-Hodgman edge clip operation the

cardinal direction of where the points lie relative to the frustum can

be recorded and used to prevent future hogel frustum intersection

tests.

Figure 8 highlights this concept where a triangle is far to the

left of the hogel plane center. If the center-most hogel was tested

against this triangle, the result would be a fully culled triangle and a

flag/bit mask indicating that all the triangle vertices were to the left

(or west). Therefore, no hogel frustum in the same up/down

(North/South) column or any frustum to the right (east) would

require testing.

Or, instead of indexing through the HPD using indices

calculated by the reverse frustum cast, the clip direction could be

used to binary search through the HPD to find a valid triangle

intersection.

The order of frustum plane testing might have an impact on

performance and some examples of Sutherland-Hodgman show

clipping to the left, then right, then up, down, and so on. It is more

beneficial to clip left, up, right, and then down as to more quickly

derive the appropriate direction to search next.

Lastly, if the hogel frustum plane equations are normalized,

then the direction vector magnitude is the distance to that vertex

from the frustum center. This information can be used to directly

index the next hogel in the HPD, negating a search entirely.

FIGURE 8. BOWTIE SMART CLIPPING

The Multi-view Processing Unit (MvPU)
Unlike a traditional GPU which is tightly bound to a host CPU

and application, the conceptual MvPU is intended to reside within

the 3D LfD hardware, relieving the host application of render

responsibility for unique display architectures. The MvPU renders

all the views in parallel from a single dispatch of the geometry from

the host application and writes directly to the display back-buffers

within the projection subsystem of the LfD. This allows the host

application to be implemented without regard of the LfD hardware

or the LfDs unique projection requirements.

MvPU Simulator
FoVI3D’s Multi-view Processing Unit (MvPU) simulator is a

C/C++ raster pipeline simulator developed to research means to

render light-field radiance images effectively. C/C++ was chosen

to implement the research pipeline merely to ensure maximum

flexibility over the render pipeline architecture and for the ease of

debugging. In addition, since the BowTie algorithm cannot be

implemented in any traditional graphics API (OpenGL, DirectX,

etc), the only fair comparison in algorithm performance was to

implement algorithms such as the Double Frustum and BowTie in a

neutral language such as C/C++ where the variations of the

algorithms could share as many stages, routines and classes as

possible. As such, any resulting gains are strictly the result of

optimizations inherit to the algorithm. It should also be noted that

since the previously described BowTie radiance image rendering is

more concerned with setting up view/frustum/triangle relationship

and the effect of shared optimizations across the HPD, more modern

shader stages such as the geometry or tessellation shaders were not

considered for this rendering evaluation.

The first stage of the MvPU raster pipeline consists of a

scene/object dispatcher which iterates over objects within the scene

and culls objects against the HPD using the reverse BowTie frustum

projection test. Therefore, the inputs to the MvPU pipeline are the

scene description, a VVT and a HPD. For every object that

intersects the HPD, a subset of HPD hogel indices is forwarded to

the second pipeline stage.

The second pipeline stage is an object triangle dispatcher where

triangle vertices are culled by the reverse BowTie frustum

projection/HPD test. The resulting list of HDP indices are the subset

of hogel frustums that intersect the triangle. The next stage is to clip

the triangle against the subset of hogel frustums. Surviving

169-4
IS&T International Symposium on Electronic Imaging 2023

Computational Imaging XXI

triangles/polygons are then passed to the final stage, the fragment

shader.

Algorithms and Optimizations Implemented within the

MvPU C/C++ Simulator
The two primary algorithms implemented and tested were the

Double Frustum and BowTie radiance image renderers. Three

flavors of the BowTie renderer were implemented to test the

previously described culling/clipping optimizations. The four tested

algorithm implementations are described below:

Double Frustum

Within the MvPU simulator, the Double Frustum algorithm

was implemented as it would be implemented within an OpenGL

render pipeline and is therefore a view-major process where the

front frustum and the back frustums are processed separately into

the same viewport. There are no common camera/view

optimizations implemented as each hogel frustum must be tested

individually without shared knowledge from sibling hogels.

Therefore, all scene triangles are tested against all Double Frustum

hogels.

Note: One huge and notable Double Frustum implementation

exception is that as a completely C/C++ simulator, the MvPU

simulator does not simulate the cost of dispatching rendering

commands from the host CPU to a GPU on a per hogel basis.

Ideally, this would not be ignored as cost of dispatching rendering

commands per view is not insignificant.

Basic BowTie

The Basic BowTie algorithm was implemented as a triangle-

major process and clipping is done in model space. One BowTie

frustum is defined per hogel, which reduces the number of triangles

tests required by the Double Frustum algorithm. Each triangle is

first tested against the hogel image plane to determine which sides

of the bowtie need to be evaluated. This information is used to

preselect which halves of the BowTie require processing for the

entire HPD. No additional optimizations were implemented to

directly compare the order/magnitude of operations with the Double

Frustum algorithm; therefore, all scene triangles are tested against

all BowTie hogel frustums.

Binary Search/Fill BowTie

The Binary Search/Fill BowTie builds upon the Basic BowTie

algorithm by using a binary search to quickly find a first triangle

intersecting frustum. The search starts with the center most hogel

in the HPD. When an intersection is discovered, the binary search

is halted and neighboring hogels are scheduled on a stack for future

processing; this is repeated until there are no more hogels to

schedule and the triangle has been processed against all intersecting

BowTie hogel frustums.

Intersection Map BowTie

The Intersection Map BowTie calculates the HPD sub-region

for triangle processing by reverse frustum projection from the

triangle vertices onto the hogel image plane in HPD space.

Test Models and Radiance Image Rendering Testing
All four algorithms for this evaluation had Object Culling

disabled and all use the exact same triangle rasterizer and fragment

shader. Therefore, this review is exclusively about the order and

cost of the triangle vertex processing. The models shown in Figure

9 and described below were used for this radiance image rendering

evaluation:

 Utah Teapot – 15,704 triangles

The Utah Teapot is a standard polygonal model used for

rendering and graphics evaluations. It is a low-complexity

(low triangle count) model whose vertices were generated

through parametric equations and is well structured.

 Gears – 101,586 triangles

Gears is a moderate-complexity model (6x triangles of Utah

Teapot) and is representive of a model created by a 3D

graphics artist within a 3D modeling package.

 DyingGaul – 379,526 triangles

DyingGaul is a high complexity model (>24x triangles of Utah

Teapot) polygonized from a high-resolution scan model.

Four 30x30 hogel HPDs were constructed using 30°, 45°, 60°

and 90° FoV frustums to highlight the effect of FoV on algorithm

performance. The hogel micro-image resolution was 60x60 pixels

on a 64x64 pixel center-to-center pitch, resulting in 1920x1920 pixel

radiance images. Bear in mind, this is a very small radiance image

and only constructed for this evaluation.

Testing and Test Results
The MvPU simulator and radiance image rendering evaluations

were conducted on a single thread of an Intel i7-4790 4.00 GHz CPU

to directly compare algorithm performance. The radiance images

generated by the Double Frustum algorithm were considered the

reference images, and subsequent rendering tests were compared to

these images for validation by taking the absolute difference

between the rendered images.

Upfront, there are two analyses to consider in this evaluation.

The first is the performance of the Double Frustum versus Basic

BowTie radiance image renderers. The second is the effect of

globally culling and clipping triangles within the BowTie renderer

either by searching for valid hogel frustum intersections or by

calculating a triangle’s bounding frustum intersection region.

Double Frustum Vs. BowTie Dispatch & Vertex Processing Time

Summary

Figure 9 summarizes the total time spent within the dispatch

and vertex processing stages of the Double Frustum and Basic

BowTie radiance image rasterizers for all the tests and models, and

highlights the benefits of rasterizing a single, 4-plane bowtie

frustum with triangle major rendering over two independent 6-plane

defined frustums with view major rendering. The largest BowTie

rendering gain was noticed within the 30° Gears test which was 8.2x

faster than the Double Frustum renderer. The smallest BowTie

rendering gain was 4.7x within the 90° Dying Gaul test.

Basic BowTie Vs. BowTie Binary Search/Fill Vs. BowTie

Intersection Map Triangle/Frustum Culling and Clipping Summary

Figure 9 shows the performance of the various BowTie

triangle/frustum culling and clipper processors that were evaluated.

As expected, the search/fill and intersection maps enabled the

BowTie algorithm to accelerate triangle/frustum culling and clipping

anywhere from 2x to 28x faster than the Basic BowTie renderer. In

all the tests, the intersection map implementation outperformed the

binary search/fill implementation. The amount of performance gain

was relative to the FoV, with the largest gains occurring with narrow

FoV where more triangles are discarded upfront.

Conclusion
The traditional render pipeline is intended to render from a

single viewpoint onto a single, large viewport. GPUs and the

accompanying APIs are well suited for this purpose. Light-field

radiance image rendering requires rendering from many viewpoints

onto small viewports, shifting the rendering processing burden from

the back-end rasterizer and fragment shader to the front-end vertex

processor. In addition, radiance image rendering burdens the host

IS&T International Symposium on Electronic Imaging 2023
Computational Imaging XXI 169-5

application with managing all the viewpoints/viewports specific to

an LfD architecture, binding the host application to that LfD

architecture.

In the Heterogeneous Display Environment (HDE), the display

is responsible for rendering the views it requires for its unique

projection requirements. While it can be argued that an array of PCs

can be allotted for this purpose, the Size, Weight, Power and Cost

(SWaP-C) of a PC cluster is extremely high for a specific and

singular rendering purpose.

As demonstrated in this evaluation, a custom multi-view render

pipeline for an LfD can expect significant performance gains by

reordering triangle dispatch and exploiting triangle optimizations

common to a 2D array of Bowtie frustums. In addition, by moving

radiance image rendering into the LfD, the enormous number of

pixels required for a deep 3D visual experience can be written

directly to the LfD micro-display back buffers, forgoing all the

cabling, protocols, space, power, and complexity of an external

cluster.

Next Steps
The C/C++ MvPU simulator has been a useful tool for the

research and development of the BowTie algorithm for rendering

radiance images more efficiently. The next phase of research is to

implement the BowTie renderer for a GPU in CUDA and exploit the

extreme parallelism capabilities of a modern GPU.

References
[1] Thomas Burnett. 2017. Light-field Display Architecture and the Challenge of

Synthetic Radiance Image Rendering. SID Symposium Digest of Technical

Papers.

[2] Thomas Burnett. 2017. Light-field Displays and Extreme Multiview Rendering.

Information Display.

[3] Michael W. Halle, Adam B. Kropp. 1997. Fast Computer Graphics Rendering

for Full Parallax Spatial Displays. Proc. SPIE. Vol. 3011.

[4] Shaohui Jiao, Xiaoguang Wang, Mingcai Zhou, Weiming Li, Tao Hong,

Dongkyung Nam, Jin-Ho Lee, Enhua Wu, Haitao Wang, and Ji-Yeun Kim,

"Multiple ray cluster rendering for interactive integral imaging system," Opt.

Express 21, 10070-10086 (2013)

[5] Yanxin Guan, Xinzhu Sang, Shujun Xing, Yingying Chen, Yuanhang Li, Duo

Chen, Xunbo Yu, and Binbin Yan. 2020. Parallel multi-view polygon

rasterization for 3D light field display. Optics Express 28, no. 23.

[6] Gil Gribb, Klaus Hartmann. 2001. Fast Extraction of Viewing Frustum Planes

from the World-View-Projection Matrix.

[7] Randy Gaul. 2013. Understanding Sutherland-Hodgman Clipping for Physics

Engines. Retrieved from:

https://gamedevelopment.tutsplus.com/tutorials/understanding-sutherland-

hodgman-clipping-for-physics-engines--gamedev-11917.

Author Biography
Thomas Burnett has been developing static and dynamic light-field

displays since 2003. In 2015, Thomas co-founded FoVI3D to

research and develop light-field display technology and solutions.

FIGURE 9. TEST MODELS, RADIANCE IMAGES AND PROCESSING RESULTS

169-6
IS&T International Symposium on Electronic Imaging 2023

Computational Imaging XXI

