We introduce a physics guided data-driven method for image-based multi-material decomposition for dual-energy computed tomography (CT) scans. The method is demonstrated for CT scans of virtual human phantoms containing more than two types of tissues. The method is a physics-driven supervised learning technique. We take advantage of the mass attenuation coefficient of dense materials compared to that of muscle tissues to perform a preliminary extraction of the dense material from the images using unsupervised methods. We then perform supervised deep learning on the images processed by the extracted dense material to obtain the final multi-material tissue map. The method is demonstrated on simulated breast models with calcifications as the dense material placed amongst the muscle tissues. The physics-guided machine learning method accurately decomposes the various tissues from input images, achieving a normalized root-mean-squared error of 2.75%.
Muralikrishnan Gopalakrishnan Meena, Amir K. Ziabari, Singanallur V. Venkatakrishnan, Isaac R. Lyngaas, Matthew R. Norman, Balint Joo, Thomas L. Beck, Charles A. Bouman, Anuj J. Kapadia, Xiao Wang, "Physics guided machine learning for multi-material decomposition of tissues from dual-energy CT scans of simulated breast models with calcifications" in Electronic Imaging, 2023, pp 228-1 - 228-7, https://doi.org/10.2352/EI.2023.35.11.HPCI-228