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Abstract
We introduce a physics guided data-driven method for

image-based multi-material decomposition for dual-energy com-
puted tomography (CT) scans. The method is demonstrated for
CT scans of virtual human phantoms containing more than two
types of tissues. The method is a physics-driven supervised learn-
ing technique. We take advantage of the mass attenuation coef-
ficient of dense materials compared to that of muscle tissues to
perform a preliminary extraction of the dense material from the
images using unsupervised methods. We then perform supervised
deep learning on the images processed by the extracted dense ma-
terial to obtain the final multi-material tissue map. The method
is demonstrated on simulated breast models with calcifications
as the dense material placed amongst the muscle tissues. The
physics-guided machine learning method accurately decomposes
the various tissues from input images, achieving a normalized
root-mean-squared error of 2.75%.

Introduction
Computed Tomography (CT) imaging comprises passing X-

rays through an opaque object at different orientations to obtain
images depicting the internal structure of the object [2]. The X-
ray projections are detected by the X-ray detector, and these X-
ray projections from different view angles of CT rotations are ar-
ranged into a 2D array, and we call such array the “sinogram”.
Then, the CT images are reconstructed from the sinograms using
different CT image reconstruction algorithms [1], such as filtered
back-projection (FBP) and Model-Based Iterative Reconstruction
(MBIR) [23, 25, 27]. CT imaging has a wide array of applications
ranging from medical and security [3, 10, 12, 27, 23, 25] to in-
dustrial and scientific [9, 6, 19, 26]. As the objects being scanned
comprise various materials, it is important to identify the location
and density of each material in the object. One important task
in CT imaging is to identify the underlying structure of an object
as various applications will have objects with various materials.
Thus, it is important to extract the material composition (density
and location of materials) of the reconstructed image. Since each
pixel (or voxel) in the CT image consists of the total radio-density
of all materials in the object, the task of extracting the material
composition at each pixel becomes challenging when there exists
a mixture of materials at a given pixel. This problem is called
multi-material decomposition in CT imaging.

If the object only consists of 2 materials, one solution to
quantitatively decompose the 2 materials is through the use of
dual-energy CT (DECT) scans [18]. In DECT, the object is inci-
dent with X-rays from two different energies, which correspond
to the characteristic absorption capabilities of the two materials.
This results in an inverse problem, allowing 2 inversions to extract
the material composition of the 2 materials. The task becomes
challenging when the object comprise of more than 2 materials,
which cannot be solved using 2 inversions. The use of DECT
is the standard in current clinical practices to decompose up to 2
materials [7], but practical realistic application of material decom-
position requires the capability to decompose multiple materials.

Traditional multi-material decomposition in DECT has been
performed through projection-based techniques concurrent with
the iterative methods for reconstructing the images [14, 15, 20].
While these methods are highly accurate, they require access
to sinograms, which have limited public access. In addition,
projection-based approaches are limited to 2D images and can-
not be applied to 3D image volumes [15]. Thus, projection-
based multi-material decomposition is not currently used in clini-
cal practice and is limited to academic research [18, 7, 8, 29].

There have been recent trends in image-based decomposition
which are performed solely in the image domain [17, 18, 8, 29].
Thus, they can be considered as a post-processing step with re-
spect to the image reconstruction procedure. These methods have
the advantage of not needing access to sinograms. Nonetheless,
they have poor accuracy [20] and are not guided by physics. In
this work, we use machine learning (ML) methods guided by
physics information to perform image-based multi-material de-
composition of tissue maps from DECT scans of subjects with
multiple materials.

Image data
The current study expands on the authors’ participa-

tion in the 2022 American Association of Physicists in
Medicine (AAPM) Grand Data Challenge, DL-spectral CT
(www.aapm.org/GrandChallenge/DL-spectral-CT/) [24]. The
data challenge broadly involved decomposition of tissue maps
from simulated dual-energy X-ray CT scans of virtual human sub-
jects with more than two tissues. The dataset in the study com-
prised 1000 cases of simulated 2D breast CT scans [21] with
four materials: three tissues (adipose, fibroglandular, and calci-
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Figure 1. Sample portrayal of the image-based machine learning framework for multi-material decomposition using duel-energy CT scans.

fication) and air. Each case contains 256 views × 1024 detector-
pixel X-ray transmission data from 50 and 80 kVp dual-energy
acquisitions. The dataset also contained reconstructed images of
512×512 pixel resolution for the high- and low-kVp acquisitions.
These images were reconstructed using standard negative loga-
rithm processing and FBP. However, they exhibited streaking and
cupping (non-uniform background gray level) artifacts.

The objective of this work is to decompose the three types
of tissues and obtain tissue maps using only the CT reconstructed
images of the breast tissue phantoms. We note that the AAPM
data challenge provided three options to obtain the tissue maps:
using the transmission data, the FBP reconstructed images, or a
combination of both. However, in the current study, we chose to
use only the FBP images provided by the AAPM data challenge
for obtaining the tissue maps. We did not use other algorithms to
reconstruct the images from the provided transmission data.

For this work, we implemented a combination of unsuper-
vised and supervised learning techniques to decompose the 3 tis-
sues and obtain the respective tissue maps by only using the FBP
images as the inputs, as shown in Fig. 1. Note that while the
teams who participated in the AAPM data challenge attained near
floating-point zero accuracy, none of the top 10 teams utilized
only the FBP reconstructed images to perform the decomposition
[24]. They relied on different variants of image reconstruction
techniques to recover the tissue maps.

Method

The ML framework comprise of two steps as shown in Fig. 1.
Step 1 involves using the input images (high- and low-kVp) to per-
form unsupervised feature extraction guided by physics knowl-
edge. Results from step 1 are fed into step 2 to perform supervised
multi-material decomposition. Step 1 broadly extracts certain fea-
tures which are used to aid step 2. We note that while the current
multi-material decomposition framework is demonstrated on the
simulated 2D breast CT scans from the AAPM data challenge,
our ML framework can be generalized to other mammography
datasets.

Step 1: Physics-guided unsupervised feature ex-
traction

The objective of step 1 is to extract the dense material(s)
from the input images. The motivation of step 1 is to reduce the
number of materials to be extracted by step 2, and thus, reduce the
complexity of the multi-material decomposition problem. More-
over, we use physics guidance to improve the overall quality of
the decomposition.

The physics information we use is that high-density lesions
have significantly different X-ray mass attenuation coefficients
compared to human tissues at different X-ray energies. X-ray
mass attenuation coefficient is the amount of X-ray absorbed by
a material at a given X-ray energy. In the current dataset, the cal-
cification regions are assumed to be composed of hydroxyapatite
[5], a form of calcium. We take advantage of the existing physics
knowledge in the literature that calcium and the materials of the
other tissues, adipose and fibroglandular, absorb X-rays at differ-
ent rate at different X-ray energies (for a depiction of the differ-
ence in X-ray attenuation coefficients, see Fig. 1 of [28]). Thus,
taking the difference between the high- and low-kVp images re-
veals the calcification regions. To generalize, the high-density le-
sions in a DECT scan can be extracted by taking the difference of
the low- and high-kVp images. We use this physics information
as a guidance to perform unsupervised feature extraction of the
dense material (calcification) from the dataset, as shown in Fig. 2.
Step 1 can be summarized broadly into the following:

1. Extract an image populated with high-density lesion regions
(calcification regions in the current dataset) by subtracting
the high- and low-kVp images. We call this image the high-
low kVp difference image. (Fig. 2(a))

2. Use unsupervised image segmentation to extract the high-
density lesion regions from the difference image. (Fig. 2(b))

3. Replace the high-density lesion regions from the high- and
low-kVp images with the background values (air in the cur-
rent dataset). (Fig. 3)

4. Provide the three images: high-calcification, low-
calcification, and calcification images, to step 2.

To perform the unsupervised feature extraction, we use the
multi-class Otsu thresholding [13] to separate the pixels at the re-
gions of high-density lesions in the high-low kVp difference im-
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Figure 2. Step 1 of the machine learning framework. (a) The FBP reconstructed high-kVp (left) and low-kVp (center) images. The difference between the

high- and low-kVp images (right) highlights the high-density lesion regions (calcification in the current dataset). (b) The multi-Otsu image thresholding routine is

applied to the difference image. The input high-low kVp difference image (left), histogram of pixel densities (center), and output labels (right) are shown.

Figure 3. Input to step 2. The high-density lesion regions (calcification in the current dataset) identified from multi-Otsu algorithm are subtracted from the

high-kVp (left) and low-kVp (center) images, and the corresponding pixels are replaced by the background values (air in the current dataset). The high-density

lesion regions are also added as an input to step 2 (right).
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age as shown in Fig. 2(b). For the current dataset, we found that
extracting the calcification regions require 5 classes to be identi-
fied using the multi-Otsu thresholding. Intuitively, the threshold-
ing algorithm would identify 4 classes - the pixels corresponding
to calcification, adipose, fibroglandular, and the background air.
Nonetheless, the region around the breast model exhibits a halo
effect, which the multi-Otsu thresholding algorithm identifies as
an additional class, as shown in Fig. 2(b)-right. The algorithm is
unable to accurately extract the adipose and fibroglandular tissues,
even by solely using either the high- or low-kVp images.

Although the multi-Otsu thresholding algorithm broadly
identifies the calcification regions, these regions does not accu-
rately match the true calcification map. We thus use the extracted
calcification regions as a guidance for step 2, the supervised ML
model to perform multi-material decomposition.

Step 2: Supervised material decomposition
We use deep learned convolutional neural networks, specifi-

cally the U-Net model [22], to perform supervised multi-material
decomposition. The U-Net model is a well established deep learn-
ing model that performs biomedical image segmentation. We use
U-Net to perform supervised regression to map the pixels in the
images resulting from step 1 to the material maps of the tissues
at the respective pixels. The input to the U-Net model is a 3D
image with 3 channels (or a 3D matrix of size 512× 512× 3):
(1) the high-kVp image, (2) the low-kVp image, and (3) the high-
density lesion regions extracted using step 1. The high-density le-
sion regions (calcification in the current dataset) in the high- and
low-kVp images are replaced with the values of the background,
which is air in the current dataset, as shown in Fig. 3. The de-
tails of the U-Net model architecture for the current dataset are
summarized below:

• Input: 3 channels of 2D images with 512×512 resolution

1. high kVp images with calcification regions replaced
by air

2. low kVp images with calcification regions replaced by
air

3. calcification regions extracted using step 1

• Output: 3 channels of 2D images with 512×512 resolution
representing mapping of the material composition of the 3
tissues.

• Hidden layer(s): U-Net model with mostly the default archi-
tecture used in [22]

– The encoder and decoder have layers of channel sizes
{64,128,512,1024}

– ReLU activation function is used in all layers.
– We added a sigmoid function at the output layer to

enforce the outputs to be in the range of [0,1].

We call our physics-guided ML model as UNetPhy. For
comparison of the UNetPhy model with a baseline image-based
ML model, we construct a U-Net model without the physics-
guidance from step 1. This U-Net only model, herein called the
UNet model, takes only 2 inputs, the raw high- and low-kVp im-
ages (without the calcification regions replaced by air), and the
tissue maps as the outputs. The UNet model represents canoni-
cal image-based multi-material ML models which map the DECT

images to the material densities without any physics information
embedded in the modeling framework.

Training the U-Net models and hyperparameter search
We use the same training setup and model hyperparameters

for both U-Net models, UNet and UNetPhy. For training the U-
Net models, we use the NAdam optimizer [11, 4, 16] for opti-
mizing the weights of the neural network based on an L2 loss of
the predicted material maps against the ground truth maps. The
L2 loss function (mean-squared error, MSE) corresponds to that
used for solving regression problems. We also tested other loss
functions such as cross entropy, binary cross-entropy (BCE), BCE
with logits, Dice coefficient, and a combination of Dice and BCE.
For the regression problem, the MSE results in the best optimiza-
tion of the network parameters. The dataset (both inputs and out-
puts) is not scaled as the pixel values are in the range of [0,1].
From the total number of images available, 95% is used for train-
ing and the rest for testing the model. The training set is split at a
70 : 30 ratio for training and validation. The training images are
randomly shuffled during each epoch of training.

As mentioned in the model setup description, we mostly use
the default setting of the U-Net model from [22]. Moreover, the
first layer of the default model has 64 channels, which might
be too large of a convolution from the input data having only 3
channels. We customized the layers in the U-Net to study the
effect of making the model shallower. We varied the channel
size of the first hidden layer from 4 to 64 and the total num-
ber of layers from 3 to 6. We noted the accuracy to increase
with the size of the first layers channel size as well as the to-
tal number of hidden layers. We choose a model with channels
{64,128,512,1024,2048,4096} to perform the modeling.

Choosing the regression loss and the sigmoid activation
function at the output layer enables us to use the U-Net model for
material decomposition, which is generally used as an image seg-
mentation model. We also use the same architecture to perform
segmentation of the images to the 3 tissues. The only change that
is required is to convert the material density values of the output
maps to binary values for each tissue at each pixel. This is done
by simply rounding each density value to the nearest integer, 0
or 1. Thus, using the same model architecture we can perform
both multi-material decomposition and image segmentation. We
tested the optimization with the different loss functions mentioned
above. The loss functions MSE and BCE gave the best results.

Since U-Net architectures can get prohibitively expensive to
train with deeper layers, there is a need to accelerate training us-
ing parallel techniques and high-performance computing. This
is more pertinent when expanding the current modeling frame-
work to 3D images. The current 2D image dataset and U-Net
model takes about 32 secs per epoch to train on a single NVIDIA
V100 GPU. Regardless of our current image dataset and model
being computationally tractable in a single GPU and not requir-
ing parallel training routines, we demonstrate the capability to
scale the training algorithm in the current study. We use the Dis-
tributed Data-Parallel training technique by PyTorch to perform
multi-GPU, multi-node training of the U-Net model on the Sum-
mit supercomputer hosted by the Oak Ridge Leadership Comput-
ing Facility. We are able to achieve strong scaling of the training
algorithm up to 128 nodes on Summit (6 NVIDIA V100 GPUs
per node) as demonstrated in Fig. 4.
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Figure 4. Strong scaling of the training algorithm for U-Net using Distributed

Data-Parallel technique of PyTorch.

The batch size (or mini-batch size) is another key hyperpa-
rameter which determines the speed as well as accuracy of train-
ing. We observe that, as expected, increasing the batch size in-
creases the number of epochs required to converge to model pa-
rameters with good accuracy. The number of nodes used in the
data-parallel training also contributes to this convergence. For all
the results in the current study, we used 8 nodes and a batch size
of 1.

Lastly, the amount of training sample is also crucial for train-
ing deeper complex models. During training, we observe artifacts
in the training and validation curves such as high-fluctuations,
large gaps between the two curves, and validation loss lower than
training loss. These suggests the amount of samples might not
be representative of the problem. Since the data is isotropic in
nature without a preferred direction, more training data can be
generated by augmenting the images through rotations. For the
current study, we augmented the dataset by simple 90◦ rotations,
generating a total of 2000 images in the dataset. Although this
helped reduce the artifacts in training curve, the overall accuracy
of the model did not increase dramatically (less than 7% increase
in accuracy).

Results
The results for evaluating a sample test case from the dataset

are shown in Fig. 5. This test case was not used for training the
U-Net models. We see from Figs. 5(a-b) that qualitatively, the
physics-guided ML model UNetPhy can effectively decompose
the tissue maps. The total root mean square error (RMSE) is
of the order O(10−2) and the normalized root mean square er-
ror (NRMSE) ‖y− ŷ‖2/‖y‖2 = 2.75%. The difference between
the ground truth map and the UNetPhy model shown in Fig. 5(c)
highlights the boundary pixels of each tissues map to accumulate
the largest error.

The comparison of the ground truth and the UNet model (U-
Net without physics guidance) are shown in Fig. 5(d). The differ-
ence images depict the higher accumulation of error by the UNet
model compared to the UNetPhy model, particularly in the tis-
sue boundaries and within the tissue regions. Many dense “spot”
like artifacts are found within the adipose tissue (left and top
parts of Fig. 5(d)-left) and the fibroglandular tissue (center part
of Fig. 5(d)-center). We find a relative increase in the NRMSE er-

ror by 18% for the UNet model compared to the UNetPhy model.
These results demonstrate the need and advantage of the frame-
work of the UNetPhy model, that adds the dense material infor-
mation into the inputs.

For the segmentation problem using the same modeling
framework as UNetPhy but the modified outputs, we obtained
similar results with a normalized RMSE of 6.75%. Similar ob-
servations regarding the hyperparameter adjustments as with the
regression problem are also observed for the segmentation prob-
lem.

We note that the L2 errors of both the material decomposition
(∼ 2%) and segmentation (∼ 6%) ML models are slightly higher
compared to other projection-based methods. The source of error
could be on the lack of sinogram-based physics information and
the high artifacts in the FBP reconstructed images. Nonetheless,
we emphasize the advantage of our method to only rely on the CT
reconstructed images and not on the sinograms, which enables
accessible usage of our method by the general public.

Concluding remarks
We introduce a physics-guided ML framework to perform

image-based multi-material decomposition of dual-energy CT
scans comprising of more than 2 types of materials. The method-
ology involves a combination of unsupervised and supervised
techniques, which is novel for image-based material decomposi-
tion methods in medical images. The physics guidance using the
difference of the dual-energy images to extract high-density mate-
rials has been very valuable to the current framework. Moreover,
we also use the same framework to demonstrate image segmenta-
tion, thus solving 2 problems with the same ML framework.

One crucial aspect that the accuracy of image-based methods
depends on is the quality of the reconstructed images [24], which
is hindered by the artifacts from the FBP reconstruction. We are
exploring other image reconstruction algorithms to reconstruct the
images from the transmission data provided by the organizers of
the AAPM challenge. We hope that images with reduced artifacts
would improve the accuracy of the overall ML multi-material de-
composition framework.
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