Drowsiness driving is one of the major reasons causing deadly traffic accidents in the United States of America. This paper intends to propose a system to detect different levels of drowsiness, which can help drivers to have enough time to handle sleepiness. Furthermore, we use distinct
sound alarms to warn the user to prevent early accidents. The basis of the proposed approach is to consider symptoms of drowsiness, including the amount of eye closure, yawning, eye blinking, and head position to classify the level of drowsiness. We design a method to extract eye and mouth
features from 68 key points of facial landmark. These features will help the system to detect the level of drowsiness in realtime video stream based on different symptoms. The experiential results show that the average accuracy of the system that has the capability to detect drowsiness intensity
scale in different light conditions is approximately 96.6%.