Back to articles
Articles
Volume: 33 | Article ID: art00004
Image
Resolution enhancement in the recovery of underdrawings via style transfer by generative adversarial deep neural networks
  DOI :  10.2352/ISSN.2470-1173.2021.14.CVAA-017  Published OnlineJanuary 2021
Abstract

We apply generative adversarial convolutional neural networks to the problem of style transfer to underdrawings and ghost-images in x-rays of fine art paintings with a special focus on enhancing their spatial resolution. We build upon a neural architecture developed for the related problem of synthesizing high-resolution photo-realistic image from semantic label maps. Our neural architecture achieves high resolution through a hierarchy of generators and discriminator sub-networks, working throughout a range of spatial resolutions. This coarse-to-fine generator architecture can increase the effective resolution by a factor of eight in each spatial direction, or an overall increase in number of pixels by a factor of 64. We also show that even just a few examples of human-generated image segmentations can greatly improve—qualitatively and quantitatively—the generated images. We demonstrate our method on works such as Leonardo’s Madonna of the carnation and the underdrawing in his Virgin of the rocks, which pose several special problems in style transfer, including the paucity of representative works from which to learn and transfer style information.

Subject Areas :
Views 28
Downloads 7
 articleview.views 28
 articleview.downloads 7
  Cite this article 

George H. Cann, Anthony Bourached, Ryan-Rhys Griffths, David G. Stork, "Resolution enhancement in the recovery of underdrawings via style transfer by generative adversarial deep neural networksin Proc. IS&T Int’l. Symp. on Electronic Imaging: Computer Vision and Image Analysis of Art,  2021,  pp 17-1 - 17-8,  https://doi.org/10.2352/ISSN.2470-1173.2021.14.CVAA-017

 Copy citation
  Copyright statement 
Copyright © Society for Imaging Science and Technology 2021
72010604
Electronic Imaging
2470-1173
Society for Imaging Science and Technology
IS&T 7003 Kilworth Lane, Springfield, VA 22151 USA