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ABSTRACT

We apply generative adversarial convolutional neural
networks to the problem of style transfer to underdraw-
ings and ghost-images in x-rays of fine art paintings
with a special focus on enhancing their spatial resolu-
tion. We build upon a neural architecture developed
for the related problem of synthesizing high-resolution
photo-realistic image from semantic label maps. Our
neural architecture achieves high resolution through a
hierarchy of generators and discriminator sub-networks,
working throughout a range of spatial resolutions. This
coarse-to-fine generator architecture can increase the
effective resolution by a factor of eight in each spatial
direction, or an overall increase in number of pixels by a
factor of 64. We also show that even just a few examples
of human-generated image segmentations can greatly
improve—qualitatively and quantitatively—the gener-
ated images. We demonstrate our method on works
such as Leonardo’s Madonna of the carnation and the
underdrawing in his Virgin of the rocks, which pose
several special problems in style transfer, including the
paucity of representative works from which to learn and
transfer style information.

Keywords: general adversarial neural network, ghost-
paintings, style transfer, computational art analysis, ar-
tificial intelligence, computer-assisted connoisseurship

1. INTRODUCTION AND
BACKGROUND

Many paintings in the Western canon, particularly real-
ist easel paintings from the Renaissance to the present,
bear underdrawings and pentimenti—preliminary ver-
sions of the work created as the artist altered and de-
veloped into the final design.1–3 In some cases the un-
derdrawing represents a design separate from the final,
visible work. Such ghost-paintings appear in the oeu-
vre of artists such as Pablo Picasso, Vincent van Gogh,
Rembrandt, and Francisco Goya, among many others.
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Ghost paintings are most common in the early work of
artists, when a financial strain may lead them to re-
use canvases by painting over earlier designs.4 These
ghost-paintings are revealed through x-radiography and
infrared reflectography in conservation studios.2

Scholars and the general art-loving public alike wish
to view and study the hidden works as they were
created—in full color and style—in order to get a richer
understanding of the artist’s work and stylistic develop-
ment. The images revealed by such technical imaging
present two difficult problems for subsequent scholarly
analysis of the hidden work:

• These imaging methods mix or overlap the visible
work with the ghost painting, so one must com-
putationally separate the designs to isolate that of
the hidden work. A promising approach to this
task relies on blind source separation, but is not
the focus of our work presented here.5

• These imaging methods produce grayscale (not
color) images. The richest images for schol-
arly analysis require the color—and more broadly
speaking style—to be recovered. This is the prob-
lem we address here: computationally recovering,
to the extent possible, the full color and style of
the hidden artwork. As part of that task, we ad-
dress the sub-problem of enhancing the resolution
of such a work, and we demonstrate that genera-
tive adversarial deep neural networks are effective
in such ends.

In separate work, we have shown promising initial
results for computational style transfer from repre-
sentative artworks to such grayscale images of ghost-
paintings.6,7 A drawback of that approach is that it
generally leads to recovered images that are of low spa-
tial resolution. Often digital versions of x-rays or infra-
red images of underdrawings are of spatial resolution
too low for adequate scholarly analysis, however. Our
work presented below is centered on style transfer for
grayscale edge maps, such as produced during the imag-
ing of underdrawings, using a novel hierarchical deep
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Figure 1. (L) Leonardo’s Madonna of the carnation (or
Madonna with vase), oil on wood panel (1478–80) (detail),
and (R) edge map, computed using deep network methods.
This edge map serves as a surrogate image of an underdraw-
ing during the development and testing of our methods.11

network architecture to increase the final spatial res-
olution. As an additional benefit our work here will
enable comparisons between prior work using compu-
tational deep neural networks and generative adversar-
ial neural networks for the problem of style transfer in
ghost-painting recovery.8

In Sect. 2 we briefly review methods for style trans-
fer with particular attention to the application of re-
covering underdrawings and ghost paintings in fine art.
Then in Sect. 4 we turn to our main concern: neural
techniques for enhancing the resolution of such images.
We present such enhanced images in Sect. 4, and sum-
marize and outline several future directions in Sect. 5.

2. BACKGROUND: STYLE TRANSFER

A number of contemporary methods for computation-
ally recovering rich versions of such underdrawings
based on style transfer using deep neural networks have
been presented.7,9, 10 While that parallel work demon-
strated convincing style transfer, leading to computed
images that are likely indicative of the original forms
of the underdrawings, that research did not adequately
address one component problem that will make the gen-
eral technique more valuable to art scholars: that is the
problem of high spatial resolution.

Specifically we approach the problem of computing
recovered images having high resolution by means of
a novel, powerful, hierarchical deep neural network ar-
chitecture. We formulate the computational problem
as an adversarial minimax game of the form

min
G

max
D
LcGAN (G,D), (1)

between a conditional generator network, G, and a dis-
criminator network, D. (The subscript cGAN indicates
a conditional generative adversarial network.) We call
the generator “conditional” because rather than map-
ping from a well-defined prior distribution of represen-
tative images (and hence styles), the network learns
to generate conditional pairs of corresponding images,
{(si,xi)}, from a training set.

The objective function in Eq. 1 is:

LcGAN (G,D) = E(s,x) [log[D(s,x)]]+Es [log[1−D(s, G(s))]] ,
(2)

where E is the expectation operator and its subscripts
denote the domains of art images. Together Eqs. 1 and
2 represent a competition—or an adversarial “game”—
in which the conditional generator seeks to create an
image similar to its set of representative images, while
the discriminator seeks to enforce similarity to the in-
complete underdrawing image.

3. RESOLUTION ENHANCEMENT IN
STYLE TRANSFER

Our approach to spatial enhancement in the context
of style transfer is to implement the minimax game
throughout a hierarchy of paired generators and dis-
criminators, which can be considered sub-networks.
Thus in the simplest case an overall generator net-
work G can be considered the serial composition of
two sub-networks, that is, G = {G1, G2}. (In princi-
ple we can employ more than two such stacked sub-
networks.) Here G1 works at a coarse scale (viz., up
to size 1024× 512 pixels), whose output is then passed
to G2, which acts as a local resolution enhancer, lead-
ing to a final high-resolution output (viz., 2048× 1024
pixels). Similarly, there are three serial discriminator
sub-networks, D = {D1, D2, D3}. These discriminators
are functionally the same but act at different downsam-
pled scales: ×1, ×2, and ×4 by area. Our overall archi-
tecture, then, encourages the coarse-to-fine objective of
the generator, thereby enhancing the resolution of the
final image beyond that of the original image.

Our goal is to learn a mapping from a grayscale ghost-
image x-ray fluorescence (XRF) or infrared reflectog-
raphy (IRR) image of an underdrawing to a colored
painting in oil. Unlike the case in generating photo-
realistic image from semantically labeled maps, there
is no ground truth pairing of {(si,xi)}. That is, we
have an underdrawing image, si from which we wish
to infer the full, colored, source image xi, but we have
no such ground-truth pairs. (We can imagine creating
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Figure 2. (L) Leonardo’s Madonna of the carnation (or
Madonna with vase), oil on wood panel (1478–80) (detail),
and (R) the “recovered” artwork generated from the edge
map in the right panel of Fig. 1 and a set of Lonarde-
schi paintings by means of our generalized adversarial neu-
ral network. The peak signal-to-noise ratio, from Eq. 4, is
PSNR ≈ 15, a high value indicating faithful recovery.

a database of such pairs of images to form a ground-
truth database, but such an effort is beyond the scope
of our present work.) Nevertheless, we frequently do
have a set of representative output images, {xi}, asso-
ciated with the artist in question. Thus we can create a
surrogate set of images, {s̃i}, derived from {xi} in order
to create a representative training set, {(s̃i,xi)}. The
surrogate distribution, s̃i, of underdrawing images must
represent as closely as possible the true distribution we
seek to learn, si.

3.1 Edge detection as preprocessing

Our research approach is to use holistically-nested edge
detection,11 to create surrogate ghost-images as edge
maps. (Although we do not explore alternate meth-
ods for extracting such edge maps, we are confident
that such alternatives would yield equally accurate,
robust, and useful such maps.) We approximate the
kinds of marks made by finite-size brushes by apply-
ing Gaussian pixel noise, p ∼ N (0, 100) followed by a
circularly-symmetric Gaussian blur kernel of width five
pixels. In this we we create a surrogate x-ray image of
a ghost painting, and retain the (visible) colored image
as ground truth for comparison and for quantifying the
performance of our method.

A great deal of information can be inferred from the
edges of certain artworks. For instance, artists such as
Henri Matisse could depict full three-dimensional vol-
umes and forms using sparse contour outlines, as re-
vealed in his numerous line drawings, etchings, and pa-
per cutout designs. Full-color paintings contain shading
and coloration information linked to such contour infor-
mation and thus, in principle, bear visual information

that can be transferred to images of just grayscale con-
tours. This is the information learned by our system.

Figure 1 shows a detail from Leonardo’s Madonna
of the carnation and the edge map produced by our
method. As mentioned, our central task is then to start
with such an edge map, along with other, representative
full-color paintings in the style of this artist, to compute
an image that resembles the source painting or “ground
truth” as closely as possible. Our additional task is to
increase the spatial resolution of the computed image
above it corresponding source image.

There remains two methodological challenges to our
approach:

• The dataset of available “style” images is often
small. In particular case, Leonardo completed only
about three dozen easel paintings.

• Our inference will be based on a distribution of un-
derdrawings that differs from surviving paintings,
that is, the priors over densities obey p(s) 6= p(s̃),
in general.

We addressed the first problem by using paintings
from the broader set of Leonardeschi paintings, that
is, paintings from the followers of Leonardo, such
as Giovanni Antonio Boltraffio, Ambrogio de Predis,
Francesco Napoletano, Andrea Solario, and Giacomo
Caprotti, the last artist is known more broadly as Saláı,
Leonardo’s younger, impish long-time confidant.

3.2 Low-to-high resolution

As mentioned above, a key problem is increasing the
resolution of a recovered image, preferably to a level
of use to art scholars.12 We addressed this problem
by starting with a high-resolution image of Leonardo’s
Mona Lisa, of dimensions 8192 × 12288 pixels, from
which we created 96 non-overlapping tiles, each of
which was 1024 × 1024 pixels. Each such patch
was digitally filtered so as to eliminate the highest-
resolution noise, such as craquelure. These new im-
ages, then, formed a new set of conditional pairs of
images, {(si,xi)}. We trained a superresolution model
of two cascading sub-networks with such paired images,
thereby learning a map from a lower-resolution image
to a higher-resolution image, as governed by Eqs. 1 and
2. The resulting high-resolution image does not include
the noise of cracks and such.

The final and complete image was computed by up-
sampling the 1024× 1024-pixel patches to 8192× 8192
pixels—a factor of eight in each linear dimension. Our
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a) b) c)
d)

Figure 3. a) The computed edge map for Leonardo’s
Madonna of the carnation, reproduced from Fig. 1 to aid
visual comparisons here. b) The preliminary results of style
transfer using the convolutional generalized adversarial net-
work. Although the overall color and lightness schemes
approximate well the ground truth painting in Fig. 1, the
rendering of much of the Virgin’s costume and skin tones
throughout are severely mottled and do not match the
ground truth. c) Human-generated coarse segmentation of
skin and hair regions. Notice that the entered regions con-
sist of coarse polygons and as such do not conform closely
to the natural contours in the work. d) The recovered art-
work inferred from the style images as well as the single
human-generated segmentation information in c). Here the
skin tones closely resemble the ground truth data, as does
the image overall.

a) b)
c)

Figure 4. a) The coarse human-generated image segmenta-
tion of a detail of Leonardo’s Virgin of the carnation. b) The
computed image reconstruction without the segmentation
information from a), and c) the computed reconstruction
using the segmentation in formation from a). Clearly this
segmentation information leads to a more faithful and accu-
rate reconstruction, particularly in the skin of both figures.

a) b) d)
d) e)

Figure 5. a) Leonardo’s Virgin of the rocks (189.5×120 cm),
oil on panel (1495–1508), National Gallery London. b) The
grayscale underdrawing of a Madonna and child composi-
tion, revealed by x-radiography. c) Human-generated coarse
segmentation of the underdrawing. d) A detail showing just
the Virgin’s head from panel c). e) The computed full-color
ghost-painting of the passage in d).

initial efforts were based on non-overlapping image
patches, and these led to slight discontinuities and block
artifacts. One approach to reducing such image arti-
facts would be to include overlapping boundaries be-
tween component blocks. We explored an alternate
approach in order to avoid such artifacts: we over-
lapped segments throughout image patches. Specifi-
cally, we split blocks at every 64 pixels, thereby creating(
8192−1024

64

)2
= 12544 overlapping segments.

We then performed superresolution inference on each
segment and numerically averaged along the appropri-
ate lattice points in order to compute the final image.
Such averaging reduces the previous artifacts signifi-
cantly. Fig. 7 shows before superresolution inference,
and Fig. 8 shows after such superresolution inference.
The color style is, qualitatively speaking, more similar
to the Mona Lisa on which the superresolution model
was trained.

4. SPATIAL ENHANCEMENT IN STYLE
TRANSFER: RESULTS

Figure 2 shows representative preliminary results for
Leonardo’s double portrait. The shading and coloration
is generally coherent and consistent though the skin
passages are somewhat mottled and lack the sfumato
and chiaroscuro for which this artist is celebrated. No-
tice, though, that the colors of the Virgin’s costume
match well, though the yellow cloth over her shoulder
at the left.

We hypothesized that the mottling of skin tones
in Fig. 2 was due to inaccuracies in segmentation—
specifically that the database of Leonardeschi “style”
images represented skin regions did not conform accu-
rately to the contours in the original painting. The
most principled solution to this problem would be to
increase the number of representative images for train-
ing. Unfortunately, we could not take this approach
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because the number of such paintings relevant to this
case is rather low. Our alternative was to exploit hu-
man expertise and knowledge, specifically about seg-
mentation by means of semi-semantic semi-supervised
labelling (SSSSL) based on human labeling of regions.
We marked regions by hand, using low opacity, based
on their broad segmentation categories of skin, hair,
clothes, or wings without fine internal detail, as shown
in the third panel of Fig. 3.

The third panel in Fig. 3 shows the improvement
in rendered images afforded by such human-generated
coarse segmentation information. The difference be-
tween inference using such SSSSL and unlabeled im-
ages in the regime of small data sets. These condi-
tions most naturally represent the out-of-distribution
performance. Note that the clear superiority of gener-
alization using SSSSL in that figure, indicating that a
small amount of information included by hand leads to
a marked improvement in rendered images.

We can quantify the benefit of such coarse segmenta-
tion information using the peak signal-to-noise figure of
merit—a measure of the similarity of a computed image
to the ground truth image. To this end, we first define
the pixel-wise mean-squared error as:

MSE =
1

3NM

N∑
i=1

M∑
j=1

(
(rij − r̂ij)

2 + (gij − ĝij)
2 + (bij − b̂ij)

2
)
,

(3)

where in our case each color channel (r, g, b) is rep-
resented with eight bits, corresponding to a range of
0→ 255. The peak signal-to-noise ratio is then:

PSNR = 20 · log10

(
255√
MSE

)
. (4)

This metric measures, in bits, a signal-to-noise ratio,
so the higher its value the more faithful the resulting
image.

Such improvement can be quantified using the peak
signal-to-noise ratio, or PSNR of Eq. 4. Figure 6 shows
the PSNR during training of the test images in Fig. 3.
The performance on the test set is consistently higher
when using SSSSL and the learning curve plateaus
quickly, just as we would expect. After all, the segmen-
tation information provided by the human experts—
even though rather coarse—nevertheless constrains the
computed image, leading to a more accurate and faith-
ful image.

The x-ray revealing the underdrawing in Leonardo’s
Virgin of the rocks presents a special challenge to

Figure 6. The peak signal-to-noise ratio, as defined in Eq. 4,
for image data of various forms. The data including human-
generated (coarse) segmentation information (top curve) is
consistently and statistically significantly higher (“better”)
than all other cases.

a) b)

Figure 7. a) The full inferred ghost-painting behind
Leonardo’s Virgin of the rocks, computed by our convo-
lutional generative adversarial networks. Clearly the style
does not fully represent that of Leonardo: the contours are
rather sinuous and the skin modeling is uneven and mot-
tled, unlike the sfumato and chiaroscuro that characterizes
his portraits. b) A set of 16 inferred works used to derive
a).

our approach. The contour of the underdrawing is
rather complex, with numerous regions with details and
oblique angles. Figure 5 shows the progression, includ-
ing a detail of the Virgin’s head in the right panel.

5. SUMMARY

We have demonstrated that grayscale edge maps of un-
derdrawings, such as provided by x-radiography and
infrared reflectography, can be colored through style
mapping of appropriate paintings by means of generera-
tive adversarial neural networks. The resolution of the
final images can be enhanced through our novel stacked
sub-network architecture, each sub-network leads to
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Figure 8. An example superresolution of Fig. 5 d) showing
the reconstructed face.

Figure 9. The reconstructed face of Madonna.

an an effective spatial oversampling. We have shown,
moreover, that coarse human-generated segmentation
information—specifically related to skin regions—can
lead to dramatic improvements in the accuracy of the
style of computed images.

Although this work has validated our general ap-
proach, our results are not yet sufficiently accurate for
careful art-historical analysis. We see several general
avenues of research needed to achieve such ends. First,
we need larger corpora of representative artworks for
style transfer. The size of such databases is deter-
mined primarily by the accidents of art history: how
many artists created appropriate works, how many such
works were executed, and how many survive.13 It may
be that works from some artists or periods simply lack
adequately large such corpora and computational meth-
ods will be of negligible value. Second, we may incor-
porate large databases of human-generated constraint
information. Here natural human-machine interfaces
will be an asset so that art experts or even the gen-
eral public can easily provide this information. We can

imagine broad knowledge capture systems over the web,
such as the Open Mind Initiative, Mechanical Turk,
and their many descendants. Third, we envision im-
provements to the network architectures and learning
protocols, specifically ones tailored to the problems of
learning and inferring two-dimensional region texture
and color from one-dimensional contours. Of course the
final stage is to package these digital tools in a form for
art scholars, particularly those who may not be also
computer scientists.14–19

It appears that such improvements on the work pre-
sented here will lead to digital tools that will find use
by art scholars, particularly conservators, curators, and
technical image analysts.
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