Back to articles
Volume: 32 | Article ID: art00020
Non-Blind Image Deconvolution Based on “Ringing” Removal Using Convolutional Neural Network
  DOI :  10.2352/ISSN.2470-1173.2020.10.IPAS-181  Published OnlineJanuary 2020

Image deconvolution has been an important issue recently. It has two kinds of approaches: non-blind and blind. Non-blind deconvolution is a classic problem of image deblurring, which assumes that the PSF is known and does not change universally in space. Recently, Convolutional Neural Network (CNN) has been used for non-blind deconvolution. Though CNNs can deal with complex changes for unknown images, some CNN-based conventional methods can only handle small PSFs and does not consider the use of large PSFs in the real world. In this paper we propose a non-blind deconvolution framework based on a CNN that can remove large scale ringing in a deblurred image. Our method has three key points. The first is that our network architecture is able to preserve both large and small features in the image. The second is that the training dataset is created to preserve the details. The third is that we extend the images to minimize the effects of large ringing on the image borders. In our experiments, we used three kinds of large PSFs and were able to observe high-precision results from our method both quantitatively and qualitatively.

Subject Areas :
Views 40
Downloads 13
 articleview.views 40
 articleview.downloads 13
  Cite this article 

Takahiro Kudo, Takanori Fujisawa, Takuro Yamaguchi, Masaaki Ikehara, "Non-Blind Image Deconvolution Based on “Ringing” Removal Using Convolutional Neural Networkin Proc. IS&T Int’l. Symp. on Electronic Imaging: Image Processing: Algorithms and Systems XVIII,  2020,  pp 181-1 - 181-7,

 Copy citation
  Copyright statement 
Copyright © Society for Imaging Science and Technology 2020
Electronic Imaging
Society for Imaging Science and Technology
7003 Kilworth Lane, Springfield, VA 22151 USA