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Abstract
Image deconvolution has been an important issue recently.

It has two kinds of approaches: non-blind and blind. Non-blind
deconvolution is a classic problem of image deblurring, which as-
sumes that the PSF is known and does not change universally in
space. Recently, Convolutional Neural Network (CNN) has been
used for non-blind deconvolution. Though CNNs can deal with
complex changes for unknown images, some CNN-based conven-
tional methods can only handle small PSFs and does not consider
the use of large PSFs in the real world. In this paper we propose
a non-blind deconvolution framework based on a CNN that can
remove large scale ringing in a deblurred image. Our method has
three key points. The first is that our network architecture is able
to preserve both large and small features in the image. The sec-
ond is that the training dataset is created to preserve the details.
The third is that we extend the images to minimize the effects of
large ringing on the image borders. In our experiments, we used
three kinds of large PSFs and were able to observe high-precision
results from our method both quantitatively and qualitatively.

Introduction
Image deblurring has been an important issue recently be-

cause of the increasing number of imaging devices and the spread
of HD displays. Thus, the demand for image blurring with high
accuracy has increased in the past several years. [1] In many cases,
image blur is caused by the motion of the camera and the subject,
failure to focus all view fields, etc.

Image deconvolution has two kinds of approaches: non-blind
and blind. Non-blind deconvolution is a classic image processing
problem which assumes that the blur kernel (PSF) is known and
doesn ’t change universally in space. In contrast, blind deconvo-
lution first estimates the PSF and then removes the blur based on
non-blind methods. The improvement of this algorithms is impor-
tant for image deblurring.

The most common method for deconvolution is the Wiener
Filter [2] which minimizes the mean square error between the es-
timated image and the target image. Another common method
is the Richardson-Lucy (R-L) method [3]. This method is pro-
cessed iteratively to move the ratio between the observed image
and the initial true image closer to 1. Although these methods are
efficient for non-blind deconvolution, they are known to produce
deconvolution artifacts in images known as“ ringing”. This rip-
pling effect is caused by the edges and ends of the blurred image
and has a negative impact on the output image. Therefore, several
methods have been proposed to minimize the ringing effect, such
as Krishnan et al. [4], Levin et al. [5], and EPLL [6].

Recently, Convolutional Neural Network (CNN) has been
used for many image processing tasks such as super-resolution
[7, 8], denoising [9], etc. CNNs are able to flexibly deal with

complex changes in images and has been used for image decon-
volution. Schuler et al. [10] first used a MLP for image deconvo-
lution. Moreover, Son et al. [11] proposed a CNN-based frame-
work which handles several PSFs. Although both methods per-
form very well on small PSFs, they are not able to effectively
handle larger kernels. Furthermore, both methods only take into
account the ideal circumstance and don’t consider the large ring-
ing effect in the output image.

In this paper, we propose a non-blind deconvolution frame-
work based on a CNN. First, the blurred image is deblurred with
the R-L method [3] which results in a deblurred image with ring-
ing effects. The ringing effect is then eliminated by a CNN trained
through residual learning. The final image is generated via post-
processing.

Out proposed method has three key points. One is our unique
CNN architecture that is able to preserve both small and large fea-
tures in images. The network used 3×3, 5×5, and 7×7 convo-
lution layers which is able to remove large ringing artifacts while
retaining the details. Another point is our training dataset which
is devised to maintain the details. It contains patches with smaller
ringing effects so that the CNN learns the differences between the
minute ringing artifacts and the details. The final point is the use
of image extension to reduce the influence of large ringing effects.

In our experiments, we used three kinds of large PSFs:
straight kernel, polyline kernel, and complex kernel. When test-
ing our model, we were able to observe high-precision results both
objectively and subjectively.

Related Works
The Problem of Image Deconvolution

Image convolution is defined by the following equation as

yyy = xxx⊗ kkk+nnn (1)

where yyy is the blurred image, xxx is the original image, kkk is the blur
kernel (PSF), and nnn is additive noise. Non-blind deconvolution is
the problem of solving for xxx given kkk. In this paper, we assume that
nnn = 000 to clearly observe the performance of the proposed image
deconvolution method.

The non-CNN Based Conventional Algorithms
The most common conventional method is the Wiener Filter.

[2]. First, the Fourier transform of (1) is

Y = X ·K (2)

where Y,X ,K are the Fourier transform of yyy,xxx,kkk. Solving for xxx
results in, the Wiener Filter is used as

xxx = F−1
(

Y
K

)
≃ F−1

(
Y · K

K2 +Γ

)
(3)
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where Γ is an extremely small value to prevent the equation from
diverging in the case of K = 0.

Another common method is the Richardson-Lucy (R-L)
method [3]. This method first estimates the initial true image xxx(1)

and moves the ratio of yyy to xxx(1)⊗ kkk closer to 1. This is done in an
iterative process,

xxx(t+1) = xxx(t) ◦
(

kkk∗⊗ yyy
kkk⊗ xxx(t)

)
(4)

where xxx(t) is the image deconvolved t times and kkk∗ is the trans-
posed matrix of kkk. The parameter t is assigned by users. Other
methods for non-blind deconvolution include Krishnan et al. [4],
Levin et al. [5], and EPLL [6].

The CNN Based Conventional Algorithms
Recently, CNN-based algorithms have been proposed for im-

age processing tasks since CNNs are able to deal with complex
changes for unknown images fluently. For the non-blind decon-
volution task, MLP (multi-layer perceptron) proposed by Schuler
et al. [10], and Son et al. [11] are proposed. Both methods use the
Wiener Filter first to get the preprocessing image xxx′. They then
generate the estimated image from a CNN,

xxx = Fθθθ (xxx
′) (5)

where θθθ is the weight of the convolution layers, batch-
normalization layers, and biases in the CNN. The network learns
the optimal parameters θθθ from the given dataset by minimizing
the mean square error between the target image xxx and the esti-
mated image xxx′,

θθθ = argmin
θθθ

P

∑
p=1

∥xxxp −Fθθθ (xxx
′
p)∥2

2 (6)

where p is the batch number and P is the total number of batches.
The MLP method [10] uses a network with four hidden layers
where it takes patches of size 39 × 39 as input and outputs a
patch of size 13× 13. In contrast, Son et al. [11] has long and
short skip-connections for long-term memory effects and captures
small changes.

Proposed Method
The Problems of the Conventional Methods

These non-CNN based and CNN based methods have several
problems. Although the Wiener Filter [2] and the R-L method [3]
are very efficient for non-blind deconvolution, they can produce
deconvolution artifacts, called “ringing”, in the output image.
Compared to these two methods, other non-CNN based meth-
ods [4–6], are able to reduce the ringing effects but at the cost
of some blur remaining in the output image. This is because the
reduction in ringing artifacts are correlated to the deblurring ac-
curacy.

The CNN-based methods [10, 11] solve these problems in
non-CNN based methods mentioned above. However, they may
not handle handle large sizes of the kernel kkk. Moreover, these
methods only consider the ideal situation in which the ringing ef-
fects generated by the borders of yyy are nonexistent by using the
“circular” convolution of xxx and kkk. The circular convolution as-
sumes that the y is periodic without the considering the bound-
aries of the image. In Fig. 1, the blurred image generated by a

(a) Circular (b) Not Circular

Figure 1. The deconvolution images by [11], before processed by “Circu-
lar” and “Not Circular” convolution

circular convolution with a straight kernel is processed very well.
In contrast, the blurred image generated by a normal convolution
is not processed very well, resulting in ringing effects. Thus, these
methods do not take into consideration the effects of the bound-
aries of yyy when seeking xxx.

The Flow of the Proposed Method
In order to solve the problems evident in the conventional

methods, we propose a new method that can handle a large kkk and
remove the ringing artifacts generated by the borders of yyy.

The flow of the proposed method is represented below. First,
the R-L method [3] is used as shown in (4), resulting in a de-
blurred image xxx′. This method is very efficient for non-blind im-
age deconvolution but results in larger ringing effects than other
methods. Second, the CNN is used to remove the ringing arti-
facts present in xxx′. Finally, the postprocessing of [11] is used to
preserve very small details in the image.

The CNN used in our method is trained by a residual dataset.
This dataset is composed of pairs xxx′ and ringing components
rrr = xxx′− xxx. We use this sort of dataset since residual learning has
proved to result in high accuracy in conventional methods such
as DnCNN [9], VDSR [12]. The parameters θθθ in our network is
trained to minimize the following.

θθθ = argmin
θθθ

P

∑
p=1

∥xxx′p − xxxp −Fθθθ (xxx
′
p)∥2

2. (7)

Next, we explain the three points of the method.

The Points of the Proposed Method
Unique Network Architecture

The first point is that our unique network architecture as
shown in Fig. 2. In ringing removal, it is known that a large
kernel in a convolution layer is most effective in removing large
ringing effects. In contrast, a smaller kernel is more effective in
removing smaller ringing effects and is better able to preserve the
details. Therefore, we propose three parallel networks with vary-
ing kernel sizes of 7×7, 5×5, 5×5.

In Fig. 2, one of the parallel networks can be expressed as

zzz1 = ϕ(WWW 1 ∗ xxx′+bbb1)

zzzl = ϕ(BN(WWW l ∗ zzzl−1 +bbbl)), 2 ≤ l ≤ L (8)

where WWW l and bbbl are trained parameters, BN is the Batch Nomal-
ization layer [13] to speed up training and improve the accuracy,
ϕ is the Leaky Rectified Linear Unit [14], ∗ is the convolution op-
eration. zzzl is the output of the l-th layer. At the end of the 7× 7
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Figure 2. The Proposed Network Architecture

(a) Lena (b) Pepper (c) Airplane (d) Milkdrop (e) Bridge (f) Goldhill

Figure 3. The standard grayscale test images

2 4 6 8 10 12

5

10

15

20

25

30

(a) Straight

5 10 15 20 25 30 35

5

10

15

20

25

30

35

(b) Polyline

5 10 15 20 25 30 35

5

10

15

20

25

30

35

(c) Complex

Figure 4. The three kinds of kernels for the experiment

convolution linear network, the zzzL is concatenated to the (L+1)-
th 5× 5 convolution layer. The output of the 7× 7 convolution
network zzzl is concatenated with the output of the 5×5 one. Like-
wise, the output of the 5×5 convolution network is concatenated
with 3×3 convolution network. This architecture makes it possi-
ble for the CNN to remove large ringing artifacts while retaining
desirable details.

The Devised Training Datasets
The second point is that we create the training dataset with

the aim of maintaining details in the output image. The data pairs

{xxx′,rrr} in the dataset have the following relationship.

rrr = xxx′− xxx. (9)

The dataset of xxx′′ is expressed with a weak ringing component rrrs,

rrrs = rrr · s, 0 < s ≤ 1

xxx′′ = xxx+ rrrs (10)

where s is a parameter for making the weak ring-
ing datasets {xxx′′,rrrs}. We prepare three datasets:
{xxx′,rrrs=1},{xxx′′,rrrs=3/4},{xxx′′′,rrrs=1/2}. Preparing these datasets
with varying ringing sizes forces the CNN to learn the different
between rrrs and the details.

Image Extension
The third point is minimizing the effects of large ringing ar-

tifacts by image extension. In the overall framework of the pro-
posed method, yyy is enlarged by 10 pixels on all 4 sides symmetri-
cally before using the R-L method [3]. Next, the ringing artifacts
are removed. Finally, the borders of xxx′ is cut by 10 pixels. This
reduces the effect of ringing artifacts.
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(a) Original image (b) Blurred image (c) Krishnan et al. [4] (d) Levin et al. [5]

(e) EPLL [6] (f) MLP [10] (g) Son et al. [11] (h) Proposed

Figure 5. The subjective comparison on the “Lena” image blurred by the polyline kernel, same as Fig. 4(b)

Table 1
THE MESUREMENT RESULTS OF THREE KERNELS (PSNR(DB)/SSIM)

(a) The straight kernel

Images Krishnan et al. [4] Levin et al. [5] EPLL [6] MLP [10] Son et al. [11] Proposed
Lena 27.54 / 0.795 28.95 / 0.815 28.47 / 0.855 26.08 / 0.757 27.09 / 0.799 31.17 / 0.887

Pepper 27.14 / 0.779 27.84 / 0.789 25.79 / 0.810 22.31 / 0.642 24.05 / 0.700 28.08 / 0.833
Airplane 26.05 / 0.810 26.09 / 0.810 27.30 / 0.862 24.78 / 0.756 27.04 / 0.794 28.03 / 0.859
Milkdrop 28.52 / 0.826 30.32 / 0.845 23.31 / 0.835 27.15 / 0.787 27.55 / 0.802 31.32 / 0.886

Bridge 21.77 / 0.484 22.46 / 0.508 23.35 / 0.623 20.87 / 0.572 23.21 / 0.781 24.93 / 0.779
Goldhill 26.23 / 0.636 26.80 / 0.652 27.10 / 0.720 22.28 / 0.618 23.89 / 0.788 28.56 / 0.830

(b) The polyline kernel

Images Krishnan et al. [4] Levin et al. [5] EPLL [6] MLP [10] Son et al. [11] Proposed
Lena 27.75 / 0.829 29.98 / 0.839 28.60 / 0.876 27.67 / 0.817 28.93 / 0.887 31.79 / 0.905

Pepper 27.54 / 0.821 29.92 / 0.831 24.02 / 0.822 27.13 / 0.792 27.97 / 0.861 30.06 / 0.872
Airplane 25.76 / 0.858 28.19 / 0.870 26.80 / 0.891 28.95 / 0.874 30.53 / 0.913 30.60 / 0.924
Milkdrop 27.88 / 0.858 30.24 / 0.870 24.87 / 0.860 28.87 / 0.810 27.55 / 0.801 30.11 / 0.895

Bridge 23.81 / 0.640 24.62 / 0.654 24.07 / 0.731 24.59 / 0.701 26.77 / 0.870 25.28 / 0.824
Goldhill 27.08 / 0.741 28.64 / 0.752 28.49 / 0.806 26.51 / 0.743 27.62 / 0.870 29.57 / 0.859

(c) The complex kernel

Images Krishnan et al. [4] Levin et al. [5] EPLL [6] MLP [10] Son et al. [11] Proposed
Lena 27.02 / 0.769 28.09 / 0.791 28.75 / 0.850 26.57 / 0.782 27.06 / 0.833 29.82 / 0.869

Pepper 26.24 / 0.753 27.41 / 0.777 26.01 / 0.803 25.10 / 0.738 25.28 / 0.772 27.87 / 0.808
Airplane 25.01 / 0.779 25.83 / 0.800 27.10 / 0.866 27.10 / 0.842 28.28 / 0.879 28.11 / 0.874
Milkdrop 25.01 / 0.779 29.62 / 0.837 26.71 / 0.838 26.80 / 0.773 26.26 / 0.777 28.20 / 0.843

Bridge 22.28 / 0.473 22.61 / 0.484 23.68 / 0.642 22.98 / 0.642 24.52 / 0.835 25.19 / 0.780
Goldhill 25.92 / 0.626 26.52 / 0.639 27.76 / 0.736 24.42 / 0.661 24.88 / 0.776 28.42 / 0.808
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(a) Original image (b) Blurred image (c) Krishnan et al. [4] (d) Levin et al. [5]

(e) EPLL [6] (f) MLP [10] (g) Son et al. [11] (h) Proposed

Figure 6. The subjective comparison on the “Goldhill” image blurred by the complex kernel, same as Fig. 4(c)

Training
We use Adam [15] to minimize the objective function in (7).

We start with a learning rate of 0.001 and multiply is by 0.1 every
10 epochs. A mini-batch size is set to 64 and the total number of
epochs is 50. To make the dataset, we randomly chose 500 im-
ages from the Microsoft COCO dataset [16] and converted it to
grayscale images xxx. We then convolved the 30× 30 the straight
kkk and iterate the R-L method [3] 30 times to create xxx′. We also
created three datasets as shown in (10). Furthermore, we increase
the dataset by rotating the kernel kkk by an angle every 15 degrees
between 0 and 180. The number of the {3×3,5×5,7×7} con-
volution layers is respectively {20,15,10}. The patch size is set
as 99×99, and 300 thousand patches are used for training.

Experimental Results
In this section, we show the results of testing on the six stan-

dard grayscale images of SIDBA (Standard Image Data-BAse)
[17] such as “Lena”, “Pepper”, “Airplane”, “Milkdrop”, “Bridge”,
and “Goldhill”. These images were not used in the training dataset
and are shown in Fig. 3. The size of the images is 512×512. We
compare the proposed method with the non-CNN based methods
(Krishnan et al. [4], Levin et al. [5], EPLL [6]) and the CNN based
methods (MLP [10] and Son et al. [11]). This was implemented
in MATLAB with the source codes that the authors provided.

How to Experiment
In the experiments, we set the convolution between xxx and

kkk as ‘symmetric’, not ‘circular’. We set the parameters of the
conventional methods fixed and the number of iterations of the
R-L method of the proposed method is set to 40. We used three

types of kkk as shown in Fig. 4 for the experiments. The Fig. 4(a) is
the straight motion kernel whose angle is 70 degree, the Fig. 4(b)
is the Polyline whose angles are 60 and 180 degree, and the Fig.
4(c) is the complex kernel. We evaluate the results objectively
with PSNR and SSIM values, and subjectively to compare each
method.

The Results of the Experiments
From Table 1, we can see that our method performs the best

objectively with the highest PSNR and SSIM values in most cases.
In particular, our method produces high values in Table 1(b) and
1(c) in spite of training the network with datasets created from
only the straight PSF. To compare the performance of the methods
subjectively, we give some examples of restored images in Figs.
5-6. As shown in Figs. 5(c)-5(d) and 6(c)-6(d), the conventional
methods do not perform well. When comparing the images in
Figs. 5(f)-5(g) and 6(f)-6(g) to images in Figs. 5(c)-5(d) and
6(c)-6(d), it is obvious that the CNN-based methods are better
for preserving the details. However, strong ringing artifacts still
remain in the restored images. In Figs. 5(e) and 6(e), the ringing
artifacts are removed, but the details are removed from the images.
In contrast, Figs. 5(h) and 6(h), show that the proposed method
removes the ringing effect while preserving the details clearly.

Conclusion
In this paper, we propose a new method for non-blind image

deconvolution. Our experiments show that our method is superior
compared to the conventional methods in several cases. However,
there still are cases where the conventional methods outperform
the proposed method. It is believed that these cases are caused by
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either the R-L method [3] or the size of the dataset.
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