Developing an augmented reality (AR) system involves a multitude of interconnected algorithms such as image fusion, camera synchronization and calibration, and brightness control, each having diverse parameters. This abundance of features, while beneficial in nature for its applicability
to different tasks, is detrimental to developers as they try to navigate different combinations and pick the most suitable configuration for their application. Additionally, the temporally inconsistent nature of the real world hinders the development of reproducible and reliable testing methods
for AR systems. To help address these issues, we develop and test a virtual reality (VR) environment [1] that allows the simulation of variable AR configurations for image fusion. In this work, we improve our system with a more realistic AR glass model adhering to physical light and glass
properties. Our implementation combines the incoming real-world background light and the AR projector light at the level of the AR glass.