Back to articles
Articles
Volume: 29 | Article ID: art00009
Image
BM3D-HVS: Content-adaptive denoising for improved visual quality
  DOI :  10.2352/ISSN.2470-1173.2017.13.DPMI-083  Published OnlineJanuary 2017
Abstract

We introduce a content-adaptive approach to image denoising where the filter design is based on mean opinion scores (MOSs) from preliminary experiments with volunteers who evaluated the quality of denoised image fragments. This allows to tune the filter parameters so to improve the perceptual quality of the output image, implicitly accounting for the peculiarities of the human visual system (HVS). A modification of the BM3D image denoising filter (Dabov et al., IEEE TIP, 2007), namely BM3DHVS, is proposed based on this framework. We show that it yields a higher visual quality than the conventional BM3D. Further, we have also analyzed the MOSs against popular full-reference visual quality metrics such as SSIM (Wang et al., IEEE TIP, 2004), its extension FSIM (Zhang et al., IEEE TIP, 2011), and the noreference IL-NIQE (Zhang et al., IEEE TIP, 2015) over each image fragment. Both the Spearman and the Kendall rank order correlation show that these metrics do not correspond well to the human perception. This calls for new visual quality metrics tailored for the benchmarking and optimization of image denoising methods.

Subject Areas :
Views 161
Downloads 1
 articleview.views 161
 articleview.downloads 1
  Cite this article 

Karen Egiazarian, Aram Danielyan, Nikolay Ponomarenko, Alessandro Foi, Oleg Ieremeiev, Vladimir Lukin, "BM3D-HVS: Content-adaptive denoising for improved visual qualityin Proc. IS&T Int’l. Symp. on Electronic Imaging: Image Processing: Algorithms and Systems XV,  2017,  pp 48 - 55,  https://doi.org/10.2352/ISSN.2470-1173.2017.13.DPMI-083

 Copy citation
  Copyright statement 
Copyright © Society for Imaging Science and Technology 2017
72010604
Electronic Imaging
2470-1173
Society for Imaging Science and Technology