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Abstract
We introduce a content-adaptive approach to image denois-

ing where the filter design is based on mean opinion scores
(MOSs) from preliminary experiments with volunteers who eval-
uated the quality of denoised image fragments. This allows to
tune the filter parameters so to improve the perceptual quality of
the output image, implicitly accounting for the peculiarities of the
human visual system (HVS). A modification of the BM3D image
denoising filter (Dabov et al., IEEE TIP, 2007), namely BM3D-
HVS, is proposed based on this framework. We show that it yields
a higher visual quality than the conventional BM3D. Further, we
have also analyzed the MOSs against popular full-reference vi-
sual quality metrics such as SSIM (Wang et al., IEEE TIP, 2004),
its extension FSIM (Zhang et al., IEEE TIP, 2011), and the no-
reference IL-NIQE (Zhang et al., IEEE TIP, 2015) over each im-
age fragment. Both the Spearman and the Kendall rank order
correlation show that these metrics do not correspond well to the
human perception. This calls for new visual quality metrics tai-
lored for the benchmarking and optimization of image denoising
methods.

Introduction
There has been intensive research on image denoising during

the last few decades. Some argue that the practical limits of im-
age denoising have now been reached. In fact, even though new
methods and modifications of old methods keep being introduced,
the relative progress in the quality of the denoised images seem to
have become more and more insignificant: if the peak signal-to-
noise ratio (PSNR) is used as a quality metric, the gap between the
best denoising methods may be within only few tenths of decibel.
Even according to established HVS-based quality metrics such as
SSIM [1], this gap is becoming insignificant.

However, even the most advanced quality metrics when
tested on specific databases of distorted images, fail to provide a
satisfactory agreement with mean opinion scores (MOSs); for ex-
ample, the state-of-the-art FSIMc [2] attains a Spearman rank or-
der correlation coefficient (SROCC) for image database TID2013
[3] of only 0.85, whereas values of SROCC near unity are desired.

Due to HSV properties such as foveation and masking, per-
ceptual quality assessment is inherently locally adaptive [1, 4, 5].
Image features and their statistical redundancy are also non-
stationary, hence modern denoising filters employ various form
of local adaptivity to the image content [6]. Thus, the perceptual
optimization of a given filter may be approached by matching its
local adaptivity to that of perceptual quality.

An additional layer of control on the local adaptivity of ar-

bitrary filters can be obtained through the content-adaptive filter-
ing [7], where a combination of elementary filters is applied to
each image fragment in different proportions depending on the
fragment’s content. The elementary filters may be filters of dif-
ferent type or even a single filter using different parameter set-
tings. The values of a local activity indicator (LAI) or several
LAIs [8] are used to determine the adaptive combination or, more
simply, the hard switching between different filters. It is impor-
tant to choose LAIs, threshold(s), and filters that are well suited
for the considered imagery [7, 9].

In this paper, we propose a CAF design that is targeted at
improving the perceived visual quality of the processed images.
Instead of utilizing a specific visual quality metric, we employ
MOS obtained from experiments with volunteers. Image frag-
ments are denoised by different elementary filters and are shown
to observers. We assume that the highest MOS for each con-
sidered fragment corresponds to the best suited elementary filter
to be used by the designed CAF for filtering any such fragment.
Hence, provided LAIs that can discriminate fragment classes cor-
responding to different elementary filters, we are able to improve
the CAF perceptual quality without need of separately modeling
either the relationship between image content and error visibility
or the relationship between image content and action of the ele-
mentary filters.

The paper is structured as follows. First, we describe the pro-
posed CAF framework. We then present the selection of LAI, fea-
tures, elementary filters, and preparation of training image frag-
ments. Next, we describe the setup of the experiment with human
observers for obtaining MOS, followed by the statistical analysis
of the collected results. We briefly analyze also how well several
visual quality metric can predict the MOS. Finally, we present
the designed CAF with hard switching, its denoising results, and
conclusions.

Proposed CAF Design Framework
Let us represent a total of Q noisy image fragments with re-

spect to a K-dimensional feature space with coordinates (features)
L1, . . . ,LK . Each noisy fragment is processed by D elementary
filters Φd , d = 1, . . . ,D, yielding Q×D filtered fragments. These
filtered fragments are shown to a, possibly large, group of human
observers for perceptual evaluation. In particular, for each of the
Q noisy fragments, each observer ranks the corresponding D fil-
tered fragments based on the relative visual quality. This yields
MOS values that indicate which filter is preferred for noisy frag-
ments at specific L1, . . . ,LK coordinates. By regression of d on
L1, . . . ,LK , we can associate a preferred filter to each position in
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Choose the
feature space

Select limited number of noisy fragments
representative of the feature space

Process noisy fragments by
all elementary filters of CAF

Use of MOS to map between features
and best elementary filters

Figure 1. Block diagram of the proposed framework

Use features to associate processed noisy block
to noisy fragments used in MOS experiments

Filter noisy block by the elementary filters that yield
highest MOSs on the associated noisy fragments

Aggregate overlapping filtered
blocks at different positions

Process the noisy image in sliding-block fashion

Figure 2. Block diagram of content-adaptive filter (CAF).

the feature space as Φd(L1,...,LK). Hence, a CAF is obtained by
using the features L1, . . . ,LK as LAIs.

The proposed general framework can be implemented in
many ways. For example, the feature space may be partitioned,
which is equivalent to a classification of the image fragments with
respect to the feature values. Further, the feature-space selection
and classification may be performed indirectly, e.g., through a
neural network. The same trained network may be used for se-
lecting representative noisy fragments for the subjective experi-
ments, as well as employed by the CAF to classify image blocks
and thus select the desired elementary filter. The CAF can be hard
switching between the elementary filters, or soft switching (out-
put of elementary filters are combined with weights dependent on
the probability that the processed block belongs to the class for
which the elementary filter is the preferred one). Furthermore,
the MOSs can be based on either full-reference or no-reference
subjective quality assessment.

Figures 1 and 2 illustrate the framework and the CAF.

In what follows, we present an instance of the proposed
framework and CAF designed based on the BM3D filter [10].

Subjective experiments
As a representative set of noisy natural images, we consider

grayscale versions of the Kodak images [11] cropped to 512×384
pixels as in the TID2013 database [3] and corrupted by additive
white Gaussian noise (AWGN) with σ2 = 400.

We consider a bivariate feature space (K = 2), defining the
two LAIs as

L1(X) =
σ2

X
σ2 , L2(X) =

1
128σ2

8

∑
i=1

8

∑
j=1

(Xi j−Bi j)
2, (1)

where X is a 8×8-pixel noisy block, σ2
X is the sample variance

of X , σ2 is the variance of the AWGN noise, and B is the most
similar block to X in `2 sense. The noise variance σ2 is assumed
to be known or previously estimated. L1 is used to characterize
a local energy of the patch, and L2 characterizes the level of dis-
similarity of a given patch with respect to other nearby patches.
The choice of these LAIs was due to the fact that BM3D exploits
sparsity which results from both local smoothness and nonlocal
self-similarity of an image.

Such small blocks are too small for the subjective experi-
ments, for which we instead use 128×128-pixel test fragments
extracted from the database images. To meet protocol recommen-
dations on subjective assessment [12], we limit the duration of
each experiment to 30 minutes and consider a total of Q = 50

noisy image fragments. In order to choose a limited set of frag-
ments that is representative of the feature space defined by the L1
and L2 LAIs, we resorted to a clustering procedure which gave
preference to fragments composed by a substantial majority of
blocks that are well concentrated on the L1,L2 plane. The 50
fragments selected for our study are shown in Figure 3.

As the bank of elementary filters, we use the BM3D filter
with D= 8 different values of hard threshold: 1.5σ , 1.9σ , 2σ ,
2.5σ , 2.7σ , 2.9σ , 3.1σ , 3.5σ . The extremes of this range cor-
respond to a very conservative preservation of details and edges
with significant residual noise and to a very aggressive suppres-
sion of noise and significant smoothing of image content. Thus,
for each of the 50 noisy fragments, we have a set of 8 filtered
fragments to be evaluated in terms of visual quality.

In this work, we consider no-reference MOSs. During the
subjective experiment, the participant is presented each of the 50
sets of filtered fragments in a random order. As can be seen in Fig-
ure 4), for each set, the noisy fragment is displayed at the center of
the window, surrounded by the eight filtered fragments in random
order. The participant has to select the filtered fragment with the
best visual appearance. The selected fragment is then removed
and the participant has to select the next best among the remain-
ing ones. This is repeated until only the central noisy fragment
is left. Thereafter, a new set of fragments is displayed. Auxiliary
information, such as set presentation order, participant name, and
total duration, is saved for each participant. Noise-free reference
images were not shown to the participants.

A total of 125 volunteers participated to the perceptual ex-
periments; they had no specific training or experience in image
processing. The obtained data was analyzed and processed to de-
tect and remove abnormal results according to methodology de-
scribed in [3, 13]. For each fragment, MOS were measured ro-
bustly as trimmed mean, where individual scores considered ab-
normal were discarded in a two-stage sieving. Specifically, we
first discarded all scores deviating from the median score more
than 3/0.6745 times the median absolute deviation (MAD), as
well as all scores from volunteers whose percentage of thus dis-
carded scores exceeded 12%. Then, we rejected the remaining
scores deviating from the mean score more than 2.33 times the
standard deviation, and again all scores from the remaining volun-
teers whose percentage of thus discarded scores exceeded 12%. In
this way, 33 subjects were discarded altogether, and 1646 scores
from the remaining 98 valid subjects were also rejected as abnor-
mal. Only the remaining 35154 scores (out of a total of 50000)
were considered valid for the calculation of the MOS.

Table 1 gives an overview of the subjective experiments.
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Figure 3. The fifty 128×128 noisy image fragments used for generating the test sets for the subjective experiments. The blue numbers indicate the fragment

number.

Figure 4. Screenshots of the user interface for assessing the quality of the fragments filtered by elementary filters: selection of the best filtered fragment at the

beginning of the ranking (left); after the three best filtered fragments had been selected (right).

Table 1. Overview of the subjective experiments

Number of noisy fragments 50

Number of elementary filters 8

Number of filtered fragments 400 = 50×8

Number of participants 125

Methodology of visual quality evaluation Selection sort

Range of individual scores 0 (worst), . . . , 7 (best)

Number of individual scores 50000 = 125×50×8

Number of valid individual scores 35154

Results
Figure 5 reports the MOSs for each of the 8 elementary fil-

ters on each the 50 noisy fragments, i.e. the MOSs for each of the

400 filtered fragments. For any such filtered fragments, the MOS
is the sample mean of the valid individual scores given by at most
92 valid subjects (87.9 on average). By dividing the sample stan-
dard deviation of the individual scores on each filtered fragment
by the square root of the number of these scores, we obtain the
standard deviations of the MOSs. In this way we obtain a con-
fidence interval for each MOS, as illustrated in the figure. The
MOS confidence intervals for the best performing filters on each
fragment are rather wide and often intersect. This means that de-
cision based on the largest MOS alone may not be perfect due to
its noisy nature.

Table 2 presents Spearman and Kendall rank order corre-
lation coefficients between MOS and a few good visual quality
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Figure 5. Mean opinion scores (MOSs) for each of the 8 elementary filters on each the 50 noisy fragments, i.e. the MOSs for each of the 400 filtered fragments.

MOSs are plotted in groups of 8 for each noisy fragment, which is indicated by the blue number on top of each subplot. The shaded gray area visualizes the

three-sigma confidence interval for each MOS value. Noisy fragments are sorted according to the index of the corresponding processed fragment having highest

MOS, indicated by the black number at the bottom of each subplot.
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Figure 6. Spearman rank-order correlation coefficients (SROCC) for the considered metrics and MOS, separately over each of the 50 groups of 8 filtered

fragments.

Table 2. Spearman and Kendall rank order correlation coeffi-
cients between MOS and metrics

Metric Spearman correlation Kendall correlation

PSNR 0.84 0.74

PSNR-HMA [16] 0.77 0.65

MSSIM [17] 0.65 0.55

SSIM [1] 0.59 0.51

NRSM [15] 0.52 0.44

FSIM [2] 0.46 0.40

IL-NIQE [14] 0.048 0.08

metrics over our test image sets. With the exception of the no-
reference IL-NIQE [14] and NRSM [15], these are full-reference
metrics which can be computed leveraging the noise-free frag-
ments. No metric achieves satisfactory correlation coefficient val-
ues. Strikingly, the largest correlation coefficients are given by

the PSNR, which does not take into account any peculiarity of the
HVS. Even though FSIM provided one of the best results for the
TID2013 [3] and LIVE [18] image databases, its performance is
not satisfactory here. The plots in Figure 6 allow identifying the
most problematic sets for the considered metrics. SROCC values
on some sets (e.g., #32) can be even negative.

Figure 7 shows two examples of weak correspondence of
SSIM to obtained MOS.

We argue that these general-purpose metrics are not suited
for assessing the quality of denoised images because they are
designed to address perception of the bias/variance trade-off on
much larger ranges, such as considered in the above mentioned
databases [3, 18].
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a. Fragment #16, threshold 2.9

MOS=5.14, SSIM=0.402

b. Fragment #16, threshold 2.0

MOS=2.17, SSIM=0.550

c. Fragment #30, threshold 2.9

MOS=5.01, SSIM=0.677

d. Fragment #30, threshold 2.0

MOS=3.28, SSIM=0.773

Figure 7. Two examples of weak correlation between SSIM and MOS

Content-adaptive image denoising
As a result of the subjective experiments, for each of the 50

noisy fragments we know which filter, among the eight variants,
provides the highest MOS; we form a vector b of length 50 with
values from 1 to 8 indicating the best filter for each fragment.

We implement the CAF as follows.
1. Compute outputs y(t), t = 1, . . . ,8 of eight BM3D filters with

the corresponding thresholds {1.5σ , 1.8σ , 2σ , 2.5σ , 2.7σ , 2.9σ ,
3.1σ , 3.5σ}.
2. Calculate L1(X) and L2(X) values (1) for a sliding 8×8 block

X in the noisy input image, resulting in 2D arrays ZL1 and ZL2 .
Perform the same procedure for the 50 noisy fragments, resulting
in the 2D arrays V (k)

L1
and V (k)

L2
, k = 1, . . . ,50.

3. For a given 8×8 noisy block at position i and j (coordinates
of the top-left corner pixel) form a vector (ZL1(i, j),ZL2(i, j)) and
perform the following. For each of the k = 1, . . . ,50 noisy image
fragments, calculate the number µ(k) of points (V (k)

L1
,V (k)

L2
) falling

inside of the circle with radius T around (ZL1(i, j),ZL2(i, j))
within the L1,L2 plane, as illustrated in Figure 8. The value
T =0.55 is chosen empirically. Let k1,k2,k3 be the indexes corre-
sponding to the three largest values of µ(k), k = 1, . . . ,50. Then,
t1 = b(k1), t2 = b(k2) and t3 = b(k3) are the indexes of three best
filters (among the 8 variants) for the given patch at the position
(i, j). We define the partial weights wi, j as follows:

wi, j(i : i+7, j : j+7, t1) = µ(k1),

wi, j(i : i+7, j : j+7, t2) = µ(k2),

wi, j(i : i+7, j : j+7, t3) = µ(k3),

and wi, j is zero elsewhere.
4. The partial weights wi, j are accumulated for all block posi-

tions, giving the CAF weights w as

w = ∑
i, j

wi, j .

5. The output y of the designed filter at the position (i, j) is
computed as the linear combination of the outputs of y(t), t =
1, . . . ,8,

y(i, j) =
∑

8
t=1 w(i, j, t)y(t)(i, j)

∑
8
t=1 w(i, j, t)

.

L2

ZL2(i, j)
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Figure 8. Scatterplot of (V (k)
L1

,V (k)
L2

) (blue dots) for fragment #1; the disc of

radius T =0.55 is the area of calculation of µ(1) for a given (ZL1(i, j),ZL2(i, j)).

Figure 9 shows an example of filtering the test image #13
from the TID2013 database by the standard BM3D filter and by
BM3D-HVS obtained from the proposed CAF design. One can
observe that the synthesized filter provides better details preserva-
tion than the standard filter add noise suppression in uniform areas
has not changed. Output images in Figure 9 and four other such
examples were shown, without providing background informa-
tion, to 10 observers (undergraduate students) who unanimously
identified the outputs of BM3D-HVS as having better visual qual-
ity than outputs of the conventional BM3D filter. Figures 10 and
11 provide a further illustration of the qualitative differences be-
tween BM3D and BM3D-HSV.

Conclusions
We have presented a content-adaptive approach to image de-

noising. We have used the BM3D filter as an example to vali-
date our framework and performed a series of experiments with
volunteers who have evaluated the quality of image fragments
denoised by BM3D with different threshold values (elementary
filters), collecting MOS values. We designed a CAF as a linear
combination of the outputs of the elementary filters with spatially
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a. output of BM3D b. output of BM3D-HVS

c. Fragment of the noise free image d. Fragment of the noisy image e. Magnified fragment of (a) f. Magnified fragment of (b)

Figure 9. The results of filtering the test image #13 from the database TID2013 corrupted by AWGN with variance σ 2=400.

adaptive weights based on obtained MOSs. This CAF provides
improved visual quality of the output image, implicitly account-
ing for the peculiarities of the HVS through its MOS-based de-
sign. We further analyzed the correlation between the collected
MOSs and several image quality metrics, reference-based as well
as non-reference, finding a significant mismatch. Thus designing
a quality metric appropriate for image denoising remains an open
problem.
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a. output of standard BM3D filter b. output of BM3D-HVS

c. Fragment of the noise free image d. Fragment of the noisy image e. Magnified fragment of (a) f. Magnified fragment of (b)

Figure 11. The results of filtering the test image Bridge corrupted by AWGN with variance σ 2=400.
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