Back to articles
Regular Article
Volume: 30 | Article ID: 37
Image
Evaluating the Performance of Different Cameras for Spectral Reconstruction
  DOI :  10.2352/CIC.2022.30.1.37  Published OnlineNovember 2022
Abstract
Abstract

Spectral Reconstruction (SR) algorithms seek to map RGB images to their hyperspectral image counterparts. Statistical methods such as regression, sparse coding, and deep neural networks are used to determine the SR mapping. All these algorithms are optimized ‘blindly’ and the provenance of the RGBs is not considered. In this paper, we benchmark the performance of SR methods—in order of increasing complexity: regression, sparse coding, and deep neural network—when different RGB camera spectral sensitivity functions are used. In effect, we ask: “Are some cameras better able to recover spectra from RGBs than others?”. In our experiments, RGB images are generated by numerical integration for a fixed set of hyperspectral images using 9 different camera response functions (each from a different camera manufacturer) plus the CIE 1964 color matching functions. Then, we train SR methods on the respective RGB image sets. Our experiments show three important results. First, different cameras <strong>do</strong> support slightly better or worse spectral reconstruction but, secondly, that changing the spectral sensitivities alone does not change the ranking of different algorithms. Finally, we show that sometimes switching the used camera for SR can give a greater performance boost than switching to use a more complex SR method.

Subject Areas :
Views 45
Downloads 16
 articleview.views 45
 articleview.downloads 16
  Cite this article 

Yi-Tun Lin, Graham D. Finlayson, "Evaluating the Performance of Different Cameras for Spectral Reconstructionin Color and Imaging Conference,  2022,  pp 213 - 218,  https://doi.org/10.2352/CIC.2022.30.1.37

 Copy citation
  Copyright statement 
Copyright ©2022 Society for Imaging Science and Technology 2022
cic
Color and Imaging Conference
color imaging conf
2166-9635
2166-9635
Society for Imaging Science and Technology
IS&T 7003 Kilworth Lane, Springfield, VA 22151 USA