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Abstract
Spectral Reconstruction (SR) algorithms seek to map RGB

images to their hyperspectral image counterparts. Statistical
methods such as regression, sparse coding and deep neural net-
works are used to determine the SR mapping. All these algorithms
are optimized ‘blindly’ and the provenance of the RGBs is not
considered.

In this paper, we benchmark the performance of SR
methods—in order of increasing complexity: regression, sparse
coding, and deep neural network—when different RGB camera
spectral sensitivity functions are used. In effect, we ask: “Are
some cameras better able to recover spectra from RGBs than oth-
ers?”. In our experiments, RGB images are generated by numer-
ical integration for a fixed set of hyperspectral images using 9
different camera response functions (each from a different cam-
era manufacturer) plus the CIE 1964 color matching functions.
Then, we train SR methods on the respective RGB image sets.
Our experiments show three important results. First, different
cameras do support slightly better or worse spectral reconstruc-
tion but, secondly, that changing the spectral sensitivities alone
does not change the ranking of different algorithms. Finally, we
show that sometimes switching the used camera for SR can give a
greater performance boost than switching to use a more complex
SR method.

1. Introduction
The light radiance coming from the scene has varying in-

tensities at each wavelength, namely the light ‘spectrum’. This
information provides rich descriptions of the light source and ob-
ject surfaces (from which the illuminating light reflects), and it
is considered useful for various computer vision and computer
graphics applications. Examples include remote sensing [40, 38],
medical imaging [28, 13], device color calibration [11, 33] and art
conservation [31, 19]—just to name a few.

There are commercially available ‘hyperspectral’ cameras
[10, 17, 18] which capture high-resolution radiance spectrum at
each pixel of the scene within a given spectral range (e.g., the ‘vis-
ible’ range that runs roughly from 400 to 700 nanometers). How-
ever, those devices often suffer from trade-offs among spectral,
spatial and temporal resolutions, while being at a much higher
price point compared to the widely available RGB cameras [7].

In RGB imaging, typically 3 types of color sensors are used
to capture the light radiances within the visible range, returning 3
intensity values per pixel. Clearly, this common imaging practice
is a lossy process for the continuous spectral radiance functions.
Moreover, different camera manufacturers and/or models use dif-
ferent set of color sensors, which makes the ‘R, G, B’ a device-
dependent measure of light [36]. This constitutes the root of

Figure 1. The RGB imaging outcome depends on the used camera model,

and so the reverse process ‘Spectral Reconstruction’ (SR) should also be

dependent of the camera model (i.e., SR 1 ̸= SR 2).

the requirement of ill-posed color conversions/calibrations among
color devices, most significantly the color correction process [14]
(where different device-dependently measured RGBs are mapped
to their approximate colorimetric counterparts, e.g., sRGB and
XYZ triplets). Spectral Reconstruction (SR) algorithms are an-
other attempt at the standardization of RGB data. Here, a hy-
perspectral image is inferred from the device RGBs. Of course,
with these spectra in-hand we can also solve the color correction
problem (by numerical integration).

Historically, given matching RGB and hyperspectral mea-
surements, SR algorithms set out to find a statistical mapping
from the former to the latter. Early methods include regression
[21, 12, 30, 25], Bayesian inference [3, 29, 9] and iterative op-
timization [8, 41]. Advantageously, these methods only need a
small set of point measurements for training. The more recent
algorithms, including sparse coding [4, 1, 26] and Deep Neural
Networks (DNNs) [6, 7], are trained on hyperspectral ‘image’
datasets, with a single RGB seen in a spectral and/or spatial neigh-
borhood mapped to a single spectral output. The advantage of
this training setup is that hypespectral image datasets provide very
large training sets. However, sparse coding (to some extent) and
DNN methods are based on orders of magnitudes more parame-
ters to solve for. It is not clear whether even a large hyperspectral
image set can serve as a rich enough training set.

The spectral reconstruction experiment is illustrated in Fig-
ure 1. Here, RGB images are generated from the hyperspectral
ground-truths by numerical integration with the camera sensitivi-
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ties. In the figure we show that the RGB images could be gener-
ated (in this case) from two different cameras—here, Point Grey
Grasshopper 50S5C and Sony NEX-5N. Note that their spectral
sensitivities are different (see especially the red sensitivity). Then
we try and infer the spectral images from the RGBs. Clearly, the
mapping function from RGB to spectrum must be different for
each camera. Further, it is a priori possible that one camera sup-
ports better spectral reconstruction than another.

In the prior art, Arad and Ben-Shahar [5] demonstrated that
there exists drastic difference in SR performance for clustering-
based SR techniques when different cameras are used, Kaya et
al. [23] developed a DNN-based method where RGB images
from different cameras can be admitted as input, and Fu et al.
[15] further proposed a CNN-based model that jointly selects the
best camera sensitivities and recover spectra. However, the prior
art did not comprehensively investigate the SR performance as a
function of both camera and SR method.

In this paper, we present SR results for 10 different cam-
era sensitivity functions (9 real cameras from different brands +
CIE 1964 color matching functions [32]), for regression (linear
and non-linear), sparse coding, and DNN algorithms. Our study
shows three main results. First, for all algorithms the choice of
camera makes a small difference in how well spectra can be mea-
sured from RGBs. Secondly, for a single camera we observe
that the mean performance ranking of the SR methods does not
change. Finally, we see that the ‘best’ camera to use depends on
the algorithm at hand (e.g., regression vs DNN) and the difference
can be significant.

2. Background

2.1. Color Image Formation
Let us denote r(λ ) as the light spectrum coming from the

scene at one pixel, where λ is the wavelength. Separately, the
R, G, and B sensors give weights to each wavelength differently
as they integrate the signal r(λ ) into the respective sensory re-
sponses [39]:∫

Ω

sk(λ )r(λ ) dλ = xk , k = R,G,B , (1)

where sR(λ ), sG(λ ) and sB(λ ) are called the spectral sensitiv-
ity functions, Ω represents the visible range which approximately
runs from λ = 400 nanometers (nm) to λ = 700 nm, and xk is the
k-th channel sensory response.

In practice, a hyperspectral imaging device measures r(λ )
discretely within Ω. Assuming that the samplings are fine enough,
we can approximate Equation (1) into a vectorized form:

[sR,sG,sB]
Tr = x , (2)

where sR, sG, sB, and r are the n-component discretized vectors of
sR(λ ), sG(λ ), sB(λ ), and r(λ ), respectively, and x= [xR,xG,xB]

T.
Effectively, we are calculating the ‘dot products’ between the dis-
crete spectral signals (i.e., hyperspectral measurements) and the
spectral sensitivity vectors. In general, the spectral sensitivities,
sR, sG, sB, are camera specific (fixed for a given RGB camera),
and can be measured using a spectrally-scanning monochrometer
[22]. Thus, if we are given a set of measured spectral sensitiv-
ities of a camera, we can use Equation (2) to simulate the RGB
responses of this camera from the hyperspectral measurements.

2.2. Spectral Reconstruction
In Spectral Reconstruction (SR), we wish to infer r from x.

Let us denote an SR algorithm as Ψ. In SR we seek to minimize
the approximation error of:

Ψ(x)≈ r . (3)

2.2.1. Linear and Non-Linear Regression
When Ψ is a ‘linear’ regression [21], a single n×3 matrix is

trained to recover spectra:

Ψ(x) = Mx . (4)

Polynomial Regression (PR) [12], Root-Polynomial Regres-
sion (RPR) [25], and Radial-Basis-Function Network (RBFN)
[30], are the non-linear instantiations of Ψ:

Ψ(x) = Mϕ(x) , (5)

where ϕ represents an expansion function. As an example,
for second-order RPR, each RGB is expanded to a 6-vector:
[R G B

√
RG

√
BG

√
RB]T, and the M in Equation (5) is n× 6.

Like RPR, the PR and RBFN methods can be thought of as re-
gressions with different expansion functions ϕ . In this paper, 6-th
order polynomial/root-polynomial expansions are used for PR and
RPR [12, 25], respectively, and 45 radial basis functions are used
for RBFN [30].

Given a set of training data, denoted as set T , the M’s in
both Equation (4) and Equation (5) are most commonly solved by
least-squares minimization [21]:

min
M ∑

i∈T

Å
||Ψ(xi)− ri||22 + γ||M||2F

ã
, (6)

where the SR function Ψ is dependent of M (and a fixed ϕ , for
non-linear regressions), and γ is an empirical factor that balances
the minimization of the fitting error (the former term) and the
magnitude of M (the latter term), which provides stability to the
solution against noise in the data [37].

In our experiment, the proper γ for each regression method is
determined by a cross-validation method [16]. Specifically, we try
different γ values, ranging from 10−20 to 1020 and finely sampled,
and solve for M iteratively. The γ that returns the minimal mean
recovery error over some validation-set data (a separate set from
the training set T ) is selected.

2.2.2. A+ Sparse Coding
The A+ sparse coding method [1] takes a different approach

to improving the fitness of linear regression. In A+, it is assumed
that a linear regression mapping is sufficient if we separate the
RGBs into ‘RGB neighborhoods’ and consider them separately.
Mathematically, we write:

neighborhood(x) = j ⇒ Ψ(x) = M jx , (7)

where the linear regression matrix M j is trained specifically for
the RGBs in the j-th neighborhood.

In training, A+ determines the neighborhoods using the K-
SVD clustering algorithm [2]. More specificaly, K clusters are
derived from the hyperspectral data, whose centers are recorded
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and projected down to the RGB space using Equation (2). Then,
surrounding each of the K RGB centers we find N neighboring
RGBs in the training set to train the local linear regression map-
ping (i.e., the M j in Equation (7)). In the inference phase, for
each query RGB we simply find its closest RGB cluster center
and apply the SR regression matrix attached to the neighborhood.

The number of neighborhoods, K, and the training neigh-
borhood size, N, were determined empirically. In this paper,
we simply use the suggested parameters presented in [1], which
are K = 1024 and N = 8192 (out of a reduced training set of
3,000,000 spectra from the ICVL dataset).

2.2.3. HSCNN-R Deep Neural Network
Recently, many SR methods are based on Deep Neural Net-

works (DNNs). For example, at least 10 new methods were pro-
posed following each of the bi-annual NTIRE Spectral Recon-
struction Challenges [6, 7], where most (if not all) methods are
based on DNNs. In this paper, we consider HSCNN-R [34]—the
second place winner of NTIRE 2018 [6] (and the one we are most
familiar with)—as an exemplar DNN method.

Like most of the DNN-based methods, HSCNN-R takes
‘patches’ of RGB image as inputs, from which both spatial and
spectral features are extracted and used to inference spectra. That
is:

Ψ
(

patch(x)
)
≈ r , (8)

where x and r are RGB and hyperspectral measurements at the
same pixel, and patch(x) indicates the RGB image patch center-
ing at this pixel. Specifically, HSCNN-R is based on a deep resid-
ual learning framework [20], where multiple ‘residual blocks’
consisting of 2 convolutional layers and 1 ReLU layer are stacked
one after another that constitutes the main feature mapping pro-
cess of Ψ [34].

Based on one suggestion in [34], the input RGB patch size
is set to 50× 50, the convolutional kernels are 3× 3, the num-
ber of filters in each layer is 64, and 16 residual blocks are used
(which translates to a depth of 34 layers) in our experiments. Most
trainings saturate at around 300 to 350 epochs (the validation-set
images are used to determine the saturation of the trainings).

3. Spectral Reconstruction as a Function of
Camera and Algorithm

3.1. Dataset
Hyperspectral measurements: We use the ICVL hyper-

spectral image dataset [4] which comprises 200 scenes of size
1300 × 1392 as the ground-truth hyperspectral measurements.
The spectrum at each pixel is measured at every 10 nanometers
(nm) between 400 nm and 700 nm.

Camera Sensitivities: Then, we have the RIT camera sensi-
tivity database of 28 cameras [22], from which we select 9 cam-
eras (from the 9 different brands presented) for our experiments.
Additionally, we also use the CIE 1964 color matching functions
[32] as a sensor set (not least because they are used in the NTIRE
challenges [6, 7]). The 10 selected cameras and their aliases used
in this paper are listed in Table 1. All camera sensitivities are
measured at (or linearly interpolated to match) the spectral range
of hyperspectral measurements (i.e., 10-nm intervals from 400 to
700 nm).

Table 1. Considered camera models for simulating the RGB
images from the hyperspectral images. The number behind
each ‘Cam’ in aliases corresponds to the order index in the
original RIT database of camera sensitivities [22].

Alias Camera name
CMF CIE 1964 Color Matching Functions

Cam 0 Canon 1D MarkIII
Cam 9 Hasselblad H2

Cam 10 Nikon D3X
Cam 20 Nokia N900
Cam 21 Olympus E-PL2
Cam 22 Pentax K-5
Cam 24 Point Grey Grasshopper 50S5C
Cam 26 Phase One
Cam 27 Sony NEX-5N

Table 2. Considered spectral reconstruction methods.

Abbreviation SR method
LR Linear Regression [21]

RPR Root-Polynomial Regression [25]
A+ A+ Sparse Coding [1]

RBFN Radial-Basis-Function Network [30]
PR Polynomial Regression [12]

HSCNN-R HSCNN-R Deep Neural Network [34]

With both information, we simulate 10 corresponding RGB
image sets from the ICVL hyperspectral image set using Equation
(2), each with a different set of camera sensitivities.

3.2. Training, Validation, and Testing
The SR methods—introduced in Section 2.2—are summa-

rized in Table 2. As a common practice we split our spectral data
into training, validation and testing sets. In our experiment, we
randomly select 100 hyperspectral images for training, 50 scenes
for validation, and 50 for testing. This training/validation/testing
division is fixed for all cameras and all the SR algorithms tested.

To account for how well spectra are recovered from RGBs,
we use the Mean-Relative-Absolute Error (MRAE) (the standard
metric to rank the methods in NTIRE challenges [6, 7]). The
MRAE calculates a percentage recovery error:

MRAE =
1
n

∣∣∣∣∣∣∣∣ r−Ψ(x)
r

∣∣∣∣∣∣∣∣
1
×100 (%) , (9)

where r and Ψ(x) are the ground-truth and reconstructed spec-
tra, n is the length of the spectral vectors (n = 31 for the ICVL
dataset), and the division is calculated component-wise. For more
details about the MRAE, see [27].

3.3. Results
The presented statistics are calculated as follows. First, for

each testing-set image, we calculate the MRAE recovery errors
for all pixels. Then, the per image mean and 99-percentile errors
are calculated. Finally, the mean results over the images (i.e, the
‘mean of the means’ and the ‘mean of the 99-percentile errors’)
over the testing-set scenes are given in Table 3 and 4, respectively.

For the per-image-mean results, additionally, we conduct a
‘paired two-sample Student t-test’ [35] for each SR method, to
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Table 3. The mean per-image-mean hyperspectral image reconstruction accuracy over the testing image set measured in MRAE.
We show MRAE in percentage (%) because it is a relative (percentage) error metric.

Mean Per-Image-Mean MRAE (%)
Method CMF Cam 0 Cam 9 Cam 10 Cam 20 Cam 21 Cam 22 Cam 24 Cam 26 Cam 27

LR 6.36 6.31 6.13 6.23 6.09 6.16 6.21 5.96 6.52 6.29
RPR 4.66 5.05 4.99 5.04 4.66 4.96 4.98 5.43 4.96 4.71
A+ 3.81 4.01 3.84 3.98 3.64 3.92 3.89 4.50 3.95 3.75

RBFN 2.10 1.89 1.86 1.90 1.93 1.91 1.87 1.80 2.09 1.94
PR 1.98 1.86 1.80 1.86 1.80 1.83 1.84 1.75 1.98 1.88

HSCNN-R 1.76 1.67 1.65 1.71 1.72 1.69 1.69 1.63 1.77 1.69

Table 4. The mean per-image-99-percentile hyperspectral image reconstruction accuracy over the testing image set measured in
MRAE (%).

Mean Per-Image-99-Percentile MRAE (%)
Method CMF Cam 0 Cam 9 Cam 10 Cam 20 Cam 21 Cam 22 Cam 24 Cam 26 Cam 27

LR 17.47 14.96 14.30 14.69 15.06 14.54 14.68 13.43 16.24 15.37
RPR 16.40 13.88 13.47 13.75 14.45 13.70 13.79 12.69 15.01 14.27
A+ 15.51 13.57 13.30 13.61 14.10 13.93 13.52 12.26 14.57 13.94

RBFN 8.77 7.75 7.49 7.57 7.65 7.92 7.29 7.39 8.71 7.48
PR 7.89 6.89 6.70 6.91 6.78 6.81 6.76 6.81 7.54 6.99

HSCNN-R 7.40 6.62 6.24 6.49 6.46 6.36 6.38 5.69 7.33 6.69

Table 5. Student t-test results between the mean perfor-
mances (Table 1) of the worst and best cameras used for each
SR method.

Method Worst Cam Best Cam t-score p-value
LR Cam 26 Cam 24 4.33 < 10−4

RPR Cam 24 CMF 3.29 < 10−3

A+ Cam 24 Cam 20 3.99 < 10−3

RBFN CMF Cam 24 4.78 < 10−5

PR Cam 26 Cam 24 5.47 < 10−6

HSCNN-R Cam 26 Cam 24 3.88 < 10−3

see if the mean performance of the ‘best camera’ is actually bet-
ter than the ‘worst camera’ at a statistically significant level. We
calculate both the t-test scores and the corresponding p-values for
the significance tests. In our case, we have 50 scenes in the test
set (i.e., 50 samples of the per-image-mean statistics), and thus
the degree of freedom of the test is 50−1 = 49. Then, according
to the ‘one-sided’ hypothesis (since we would only like to know if
the best camera’s mean MRAE is lower than the worst camera’s),
we calculate the p-values (i.e., the level of significance) from the
t-test scores given the t-distribution table [24]. Both numbers are
given in Table 5. As shown, the performance of the best camera is
always statistically better than the worst for all 6 algorithms tested
(i.e., p < 0.05, or equivalently, at > 95% statistical significance).

For one scene in the ICVL dataset, we present the pixel-wise
MRAE error maps representing the performance of the worst and
the best cameras for each SR method in Figure 2.

3.4. Discussion
The statistics in Tables 3, 4 and 5 show several important re-

sults. First of all, let us fix each SR method individually while
comparing the performances when different cameras are used
(i.e., comparing the numbers horizontally). Clearly, for all meth-
ods, both the mean (Table 3) and 99-percentile (Table 4) perfor-

mances vary when different cameras are used. And, the range of
variation (between worst and best case) for mean results is around
9% to 24%, and for 99 percentiles it is in the order of 18 - 30%.

In general, SR methods with lower mean errors also has
lower 99-percentile errors. However, the respective camera rank-
ings based on either mean or worst-case performances do not al-
ways match (i.e., cameras that return better mean performance
might perform worse in the worst case). We can visually observe
this discrepancy in Figure 2. Clearly, while the best cameras lower
the general level of errors, some parts of the scene appear to get
worse, e.g., the ‘tree’ part in the top-left corner for A+ and RPR,
and the ‘sky’ part in the top portion for PR and RBFN.

In Table 5, we also observe that, in terms of mean perfor-
mance, the best camera for one method is not necessarily the best
for other methods. For instance, the best camera for LR, RBFN,
PR and HSCNN-R—Cam 24—is in turn the worst camera for
RPR and A+. This is a curious result and indicates a potentially
rather strong dependence between camera and algorithm.

Next, let us consider the rankings of SR methods while fix-
ing each camera used (i.e., comparing the numbers vertically). In
terms of the mean performance, we see the rankings do not change
when switching the cameras. This result provides an empirical
basis that we could choose from a range of real camera spectral
sensitivities to benchmark the SR methods with consistent rank-
ings. The rankings can, occasionally, change for the 99-percentile
error. Indeed, we see that for the Olympus E-PL2 camera (Cam
21), RPR delivers a lower 99-percentile MRAE than the A+ algo-
rithm, while the order is reversed for all other 9 cameras.

Finally, let us view the results in the context of changing
both the cameras and algorithms. In SR—as in many areas of
computer vision—it is evident that we need to be careful in ex-
periments and ‘compare like with like’. Suppose that in an arti-
cle they train and test the PR method using Cam 24 (Point Grey
Grasshopper 50S5C) while another team trains and tests HSCNN-
R using Cam 26 (Phase One), and if we (wrongly) compare the
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Figure 2. The worst camera vs. best camera comparison for each SR method on one example scene, in terms of the MRAE error heat map.

two performances, we might reach the conclusion that PR per-
forms slightly better than HSCNN-R in mean performance, and
in terms of 99 percentiles the performance advantage is signifi-
cant. Yet, if we train and test on the same camera (either Cam 24
or Cam 26) for both algorithms, we come to the opposite conclu-
sion (that HSCNN-R is better).

Another aspect to look at this comparison is that, as we pur-
suing the advance of SR mapping function (in most case, make it
more complex), it is possible that switching the used RGB camera
can reach better performance, i.e., switching the camera used for
training PR from Cam 26 to Cam 24 can reach better performance
than continuing using Cam 26 and switching to use HSCNN-R for
SR (while HSCNN-R is orders of magnitudes more complicated
than PR [27]).

4. Conclusion
Spectral Reconstruction (SR) algorithms attempt to recover

hyperspectral images from RGB camera responses.In this paper,
we investigated the interplay between camera spectral sensitivities
and SR algorithms. We chose 10 different sets of camera spectral
sensitivities and 6 SR algorithms—including linear and non-linear
regressions, sparse coding, and Deep Neural Network (DNN).

Our results allow three broad conclusions to be made. First,
for all 6 SR algorithms, there exists a ‘best’ and a ‘worst’ camera:
the algorithm recovers spectra that are statistically significantly
more accurate using the best as opposed to the worst camera. Sec-
ond, the mean algorithm performance rankings of the tested SR
methods do not change for all cameras considered (while the rank-
ing for the worst case 99-percentile error can change slightly). For
example, the DNN method we considered is always better than the
regression-based methods (e.g., polynomial regression), and this
does not change when we change the camera. This said, in con-
trast we found that, depending on the algorithm, the ranking of the
cameras could change markedly. This is a curious result. Indeed,
at the margin it means that one algorithm while generally deemed
better than others (e.g., DNN is better than polynomial regression)
can potentially be overcome simply by switching the used camera
(we indeed found that switching to use a different camera to train
the polynomial regression can have a greater performance boost
than switching to use the DNN for SR while continuing to use the

original camera).
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