Over the years, a high number of different objective image quality metrics have been proposed. While some image quality metrics show a high correlation with subjective scores provided in different datasets, there still exists room for improvement. Different studies have pointed to
evaluating the quality of images affected by geometrical distortions as a challenge for current image quality metrics. In this work, we introduce the Colourlab Image Database: Geometric Distortions (CID:GD) with 49 different reference images made specifically to evaluate image quality metrics.
CID:GD is one of the first datasets which include three different types of geometrical distortions; seam carving, lens distortion, and image rotation. 35 state-ofthe-art image quality metrics are tested on this dataset, showing that apart from a handful of these objective metrics, most are
not able to show a high performance. The dataset is available at <ext-link ext-link-type="url" xlink:href="http://www.colourlab.no/cid">www.colourlab.no/cid</ext-link>.