
Colourlab Image Database: Geometric Distortions
Marius Pedersen and Seyed Ali Amirshahi
The Norwegian Colour and Visual Computing Laboratory, Norwegian University of Science and Technology, Gjøvik, Norway
marius.pedersen@ntnu.no, s.ali.amirshahi@ntnu.no

Abstract
Over the years, a high number of different objective image

quality metrics have been proposed. While some image qual-
ity metrics show a high correlation with subjective scores pro-
vided in different datasets, there still exists room for improve-
ment. Different studies have pointed to evaluating the quality
of images affected by geometrical distortions as a challenge for
current image quality metrics. In this work, we introduce the
Colourlab Image Database: Geometric Distortions (CID:GD)
with 49 different reference images made specifically to evalu-
ate image quality metrics. CID:GD is one of the first datasets
which include three different types of geometrical distortions;
seam carving, lens distortion, and image rotation. 35 state-of-
the-art image quality metrics are tested on this dataset, showing
that apart from a handful of these objective metrics, most are not
able to show a high performance. The dataset is available at
www. colourlab. no/ cid .

Introduction
Measuring perceived image quality is important in many

imaging applications. For this task, both subjective and objective
techniques have been proposed. A plethora of objective Image
Quality Metrics (IQMs) have been proposed in the literature [1],
with the goal to complement or replace subjective assessment.
These have been suggested for a number of applications, such as
printing [2, 3], gamut mapping [4], tone mapping [5], and 360 de-
gree images [6]. To evaluate the performance of IQMs, datasets
containing distorted images and their respective subjective qual-
ity scores have been introduced [7, 8, 9, 10]. IQMs have shown
high accuracy [1, 11] in most datasets with common spatial dis-
tortions such as blur and compression artifacts.

It is well known that compared to spatial distortions, when it
comes to predicting the quality of images affected by geometric
distortions such as translation, scaling, and rotation current IQMs
show a rather low accuracy. Being able to handle such distortions
has been stated as one of the main challenges facing IQMs [12].
While geometric distortions, when small, usually have little in-
fluence on the perceived quality of images they can have a large
impact on IQMs. This is more evident in the case of those met-
rics that are pixel based. Naturally, such difference between the
subjective and objective evaluation is a good evidence of how
IQMs show a low performance in the case of images affected
by geometrical distortions. Works such as [13] have linked the
performance of IQMs to the datasets they are trained and tested
on. Since benchmark datasets such as the TID2013 [7], LIVE
[8], CSIQ [9], and CID:IQ [10], do not include geometric dis-
tortions, making it difficult to evaluate and benchmark IQMs re-
garding this quality aspect. In this study, we address this issue
by introducing the Colourlab Image Database: Geometric Dis-
tortions (CID:GD) which is one of the first subjective datasets in
the field of image quality which is solely focused on geometric
distortions. Our goal is to not only provide the research commu-
nity with a unique and much needed dataset, but also to evaluate

the performance of state-of-the-art IQMs on images which have
been affected by geometrical distortions.

In the rest of the paper, we will first introduce the CID:GD
dataset, the subjective experiment, and the IQMs evaluated in
this study are introduced in the next sections followed by the
results of the subjective experiment and the performance of the
mentioned IQMs. Finally, a conclusion and the future direction
of the work is presented.

Overview of the dataset
The CID:GD dataset is built on the CID:IQ dataset [10]

and extends the number of images and distortions in that dataset.
CID:GD consists of 49 reference images (Figure 1) of which 23
were from the CID:IQ dataset and 26 images were used for the
first time in this dataset. Similar to the CID:IQ dataset, all images
were cropped in a way that the images had a size of 800×800
pixels. To analyze and assess the characteristics of the reference
images, we have followed the recommendations by Winkler [14].
That is, we have calculated the Spatial Information (SI),

SI =
√

L/1080
√

∑s2
r/P, (1)

an indicator of edge energy and the colorfulness,

CF =
√

σ2
rg +σ2

by +0.3
√

µ2
rg +µ2

by, (2)

an indicator for variety and intensity of colors in the reference
images. In Eq. (1), L is the number of vertical lines (in our
case the images have 800 lines), P is the number of pixels (in
our case all images are of size 800× 800 pixels), and s2

r is the
grayscale image filtered horizontally and vertically with a Sobel

kernel sr =
√

s2
v + s2

h. In the case of colorfulness represented by
Eq. (2), rg = R−G and by = 0.5(R+G)−B, being an opponent
colorspace.

By plotting SI against CF values (Figure 2) we can see that
the reference images in CID:GD span a wide area with a good
distribution in the space. This indicates that the reference images
have a broad distribution of content. Compared with other state-
of-the-art datasets such as CID:IQ [10] (Figure 2(b)), Ajagamelle
[15] (Figure 2(c)), TID [7] (Figure 2(d)), Dugay [16] (Figure
2(e)), CSIQ [9] (Figure 2(f)), VLCFER [17] (Figure 2(g)), IVC
[18] (Figure 2(h)), LIVE [8] (Figure 2(i)), and LIVE MD [19]
(Figure 2(j)) the CID:GD dataset has a good distribution.

For the 49 reference images in the CID:GD dataset, we in-
troduce the following three different types of distortions; namely
seam carving, lens distortion, and image rotation.
Seam carving [20] was developed for content-aware image re-
sizing, where seams (or paths of pixels connected from top to
bottom or left to right) through the image are found and used to
extend or reduce the size of the image. Using the seam carv-
ing method, 7.5% and 15% of the pixels in both horizontal and
vertical directions were first removed and then inserted, making
the resulting image to have the same pixel size. Such a distor-
tion can result in changes in the aspect ratio of objects in the
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Figure 1. Images in the CID:GD dataset. The two top rows show the images in the CID:IQ dataset while the bottom two rows correspond to images which

are used for the first time in the CID:GD dataset.
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Figure 2. Spatial information (SI) plotted against colorfulness (CF) for reference images in the (a) CID:GD , (b) CID:IQ [10], (c) Ajagamelle [15], (d) TID [7],

(e) Dugay [16], (f) CSIQ [9], (g) VLCFER [17], (h) IVC [18], (i) LIVE [8] and (j) LIVE MD [19] datasets.

scene, remove content, and introduce contours in the image (Fig-
ure 3(b)). In our experiments, we refer to the distorted images
of seam carving as “Seam Carving 7.5%” and “Seam Carving
15%”. For the production of the new images, we used the imple-
mentation provided by Afifi [21] in Matlab.

Lens distortion was applied to produce four different images,
each with different levels of lens distortion using Matlab. This in-
cludes pincushion distortion with a distortion parameter of −0.1
and −0.5, referred to as “Lens Distortion −0.1” and “Lens Dis-
tortion −0.5” respectively (Figure 3(c)) and barrel distortion with
a distortion parameter of +0.1 and +0.25 which we refer to as
“Lens Distortion +0.1” and “Lens Distortion +0.25” respec-
tively (Figure 3(d)). The distorted images are the same size as
the reference image.

Image rotation was applied to the images by +1 and -3 degrees
referred to as “Rotation +1 degree”, “Rotation -3 degree” respec-
tively (Figure 3(e)) using Matlab. The pixels in the image which
need to be replaced due to the nature of the rotation are replaced
by the median pixel value in the image calculated before rota-
tion. The images after rotation are the same size as the reference
image, meaning that some content has been cropped.

The CID:GD dataset provides eight different distorted im-
ages per reference image, resulting in a total of 392 test images.
All images having the same size as the original image allows for
the dataset to also be used to evaluate full-reference IQMs.

Subjective experiment
The subjective experiment was carried out as a single stim-

ulus category judgement experiment using the web platform
QuickEval [22]. During the experiment the observers rated the
reference image along with the eight distorted images. Prior to
the experiment, the observers were not informed about the type
of distortions in the dataset. During the experiment the observers
were asked to “Rate the quality of the image using a 5 point
scale”. The scale was “1-bad”, “2-poor”, “3-fair”, “4-good”, “5-
excellent”, following the ITU recommendations [23]. Due to the
number of images in the dataset, the experiment was split into
four different image sets three containing 110 images and one
110 to include all 441 images in the dataset (49 reference and
392 distorted images) selected randomly from the dataset. We
should point out that the mentioned image sets do not share any
images among each other. Observers were then given the chance
to evaluate one or more sets in each observation session. Apart
from randomly selected images for each image set, the images
which were shown on a neutral (gray) background in each set
were also presented in a random order to the observers so that
the order the images are evaluated would not have an effect on
the observer’s evaluation.

33 different observers (20 males and 13 females) partici-
pated in the experiment. A minimum of 15 observers participated
in each session, following the recommendation by CIE [24]. Five
observers evaluated all four image sets. The judgements from the

25929th Color and Imaging Conference Final Program and Proceedings



(a) Reference image

(b) Seam Carving 15% (c) Lens Distortion -0.5

(d) Lens Distortion +0.25 (e) Rotation -3 degrees

Figure 3. Example of distorted images (a) Reference image, (b) Seam

Carving 15%, (c) Lens Distortion -0.5, (d) Lens Distortion +0.25, and (e)

Rotation -3 degrees.

observers were processed into z-scores [25].

Objective metrics
In our experiments the performances of a wide range of

different state of the art IQMs were evaluated on the CID:GD
dataset. The IQMs selected were Structure Similarity In-
dex Metric (SSIM) [26], Structural Content [27], PSNRHVSM
[28], Multiscale SSIM (MSSIM) [29], Color Image Differ-
ence (CID) [30], Feature SIMilarity (FSIM) and the FSIMc
(colour) [31], Edge Strength SIMilarity (ESSIM) [32], Convo-
lutional Neural Networks Quality (CNNQ) [33], Spatial Dif-
ference of Gaussians (SDOG) [15], Spatial Hue Angle Met-
ric (SHAMEII) [34], Saliency comparison (SAL) [35], Visual
Saliency based Index (VSI) [36], Colorfulness-based Patch-
based Contrast Quality Index (CPCQI) [37], High Order Statis-
tics Aggregation (HOSA) [38], Blur [39], Blur Metric [40], Spec-
tral and Spatial Sharpness (S3) [41], Cumulative Probability of
Blur Detection (CPBD) [42], FRIQUEE [43], Blind Image Qual-
ity Assessment through Anisotropy (BIQAA) [44], Just Notice-
able Blur Metric (JNBM) [45], and variations of the CNNQ met-
ric (CNNQ-SSIM, CNNQ-PSNR, CNNQ-NAE, CNNQ-MSE,
CNNQ-MAE and CNNQ-SC) [46]. This selection covers a
wide range of IQMs, containing full-reference and no-reference
IQMs, pixel-based and spatial IQMs, single-scale and multi-
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Figure 4. Z-scores for different types of image distortions.

scale IQMs, etc. For a description of the IQMs we refer the
reader to the respective publications.

To analyse the performance of the different IQMs we
will calculate the non-linear Pearson correlation based on a
5-parameter logistic function [8]. The predicted scores were
mapped to the subjective scores

Q = β1(
1
2
− 1

e−β2(Qp−β3)
)+β4Qp +β5 (3)

where Qp and Q are the predicted and the mapped scores and
β1–β5 are fitting parameters. We will also calculate the correla-
tion coefficients for each of the 49 different images, as this could
reveal differences between the metrics for images with different
content.

Results
In this section we provide an analysis of the subjective

scores collected in our observation test followed by an in-depth
study on the performance of different IQMs on the dataset.

Analysis of the subjective scores
By analysing the subjective scores, it is clear that the refer-

ence image has the highest z-score, but its 95% confidence inter-
val overlaps with the test images with a -0.1 lens distortion (Fig-
ure 4). It is not surprising that the reference image has the highest
z-score as it only contains natural distortions from the acquisition
process. In the case of test images, the lowest z-score is for -0.5
lens distortion followed by the 15% seam carving distortion. In
the case of -0.5 lens distortion, significant artifacts are introduced
to the images, this is especially observed at the boundary were
perspective changes are introduced. When it comes to 15% seam
carving, some images have significant artifacts as well, this can
be seen in images where lines that were straight became crooked.
An example is the markings on the soccer field, which is known
by the observers to be straight. With the -0.1 lens distortion most
images have a higher positive z-score, but there are images where
one can expect to see straight lines, and it is in these images that
observers more easily notice the pincushion. In the images with
+1 degree rotation, and for some with -3 degrees rotation, the
content of the image could make detecting the rotation rather dif-
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ficult. This is likely the reason this distortion has a higher z-score
in certain images.

Analysis of the z-scores for each of the 49 images shows
that in some images the 95% confidence interval overlaps be-
tween most distortions and the reference, indicating that the ob-
servers cannot differentiate between them. As an example, in im-
ages with larger uniform areas, such as the blue jellyfish image,
the paths that are removed and added by seam carving are in the
background and not introducing artifacts in the main objects, re-
sulting in the observers not perceiving or finding the artifacts se-
vere enough to differentiate. This is also an image where change
in the shape of the jellyfish is difficult for observers to notice,
which could be linked to the fact that jellyfish could have differ-
ent shapes. Other distortions therefore introduce likely realistic
content. In the case of other images, there is a much larger spread
in the z-scores, indicating that the observers are able to differen-
tiate between the distortions. These images have lines that the
observers know should be straight, and contain known objects
(such as a bus, people, houses). Having a known reference makes
it easier for the observers to judge the severity of the geometrical
distortion. It is clear from the subjective results that the content
of the images plays an important role in the assessment carried
out by the observers. The average standard deviation for the 49
different images per distortion is similar. However, we see some
differences between the images. This for example can be seen
in portrait images where some of the observers seem to be more
sensitive to certain distortions.

Analysis of the objective scores
To analyse the performance of different IQMs non-linear

Pearson correlation for the IQMs based on a 5-parameter logis-
tic function was calculated (Figure 5). From the results we can
observe that the CNNQ IQM [33], which although it is based on
the use of CNNs which due to the use of pre-trained CNN mod-
els its computational time is fast and comparable with traditional
IQMs, shows the best performance. It is interesting to observe
that other variations of the CNNQ metric [46], which are more
sensitive to changes in the geometrical properties of the image,
have a slightly lower correlation value. We can also notice that
in general, compared to no-reference IQMs, full-reference IQMs
show a better performance. Keeping in mind that the reference
images have been evaluated as having the highest quality overall,
full-reference IQMs have a clear advantage. The no-reference
IQM with the highest correlation rate of 0.10 is HOSA. Further
analysis also reveals that some of the IQMs have problems with
scale differences between images, which has been shown in the
literature for other datasets [47].

We have also analyzed the correlation for each of the 49 im-
ages in the dataset (Figure 6). From the figure we can notice that
the CNNQ metric in most images provides a high linear Pear-
son correlation. In 28 of the images the CNNQ-CONV5 has the
highest linear Pearson correlation, while CNNQ-CONV4 has the
highest in 9, and CNNQ-CONV1 in 4 images. We notice that
in most cases the CNNQ IQM is able to correctly predict seam
carving 15% or lens distortions -0.5 to be of the lowest quality. In
comparison, in most cases (43 images) SSIM judges seam carv-
ing to have the lowest quality, the same can be seen in the case
of iCID, SHAMEII, SDOG and other IQMs. This can be linked
to the larger pixel displacement by seam carving compared to
other distortions, but such a geometric displacement is not seen
in the same way by the observers for most images. Other met-
rics such as the SAL IQM, which is based on saliency and not
structural similarity or color difference, perform differently. In

regard to ranking a specific distortion as having the lowest qual-
ity, no-reference IQMs are less consistent. Some IQMs have a
larger interquartile range indicating that they are less consistent
in their predictions. Our analysis of the Spearman correlation
coefficients shows similar results.

The most difficult image, on average, for the IQMs to pre-
dict is reference image seven (winter scene with a barn and snow)
and its distorted versions. This is one of the few images, where
the reference image has not been rated as the best quality image
resulting in a low performance in full-reference IQMs. The same
can be said for reference images six (landscape) and eight (baby
holding a hand). In reference image six, despite the fact that one
has more changes than the other, the observers have judged the
two seam carving images to be of equal quality. This is possibly
due to the content of the image containing higher frequencies,
making it challenging for the observers to detect the image arti-
facts. In general, observers have been able to detect changes in
perspective or introduce artifacts resulting in perceived low qual-
ity. These geometric distortions are difficult to detect for IQMs
as the metrics predict larger pixel displacements to have lower
quality rather than being able to predict smaller pixel displace-
ments, but introducing perspective or artifacts are perceptually
more annoying.

Conclusions and Future Work
In this study we have introduced the Colourlab Image

Database: Geometric Distortions (CID:GD) with 49 different
reference images that include three different types of geomet-
rical distortions; seam carving, lens distortion, and image rota-
tion. The images have been evaluated by observers in a category
judgement experiment. In addition, we have evaluated 35 state-
of-the-art image quality metrics on the new dataset. Our evalu-
ations show that most metrics have a low or average correlation,
with the highest being around 0.67. The results indicate that the
evaluation of geometric distortions is challenging for image qual-
ity metrics, and that this new dataset can be an important step in
developing new image quality metrics for such types of distor-
tions. The dataset is available at www.colourlab.no/cid.
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Figure 5. Non-linear Pearson correlation values with a 95% confidence interval. The left most IQMs including CNNQ-SC are full-reference IQMS, while the

right most IQMs from Blur are no-reference IQMs.
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[44] S. Gabarda and G. Cristóbal. Blind image quality assess-
ment through anisotropy. JOSA A, 24(12):B42–B51, 2007.

[45] R. Ferzli and L.J. Karam. A no-reference objective image
sharpness metric based on the notion of just noticeable blur
(jnb). IEEE transactions on image processing, 18(4):717–
728, 2009.

[46] S.A. Amirshahi, M. Pedersen, and A. Beghdadi. Reviving
traditional image quality metrics using CNNs. In Color and
imaging conference, number 1, pages 241–246, 2018.

[47] M. Pedersen and I. Farup. Improving the robustness to im-
age scale of the total variation of difference metric. In 3rd
International Conference on Signal Processing and Inte-
grated Networks, pages 116–121. IEEE, 2016.

26329th Color and Imaging Conference Final Program and Proceedings




