Augmented reality simulations aims to provide realistic blending between real world and virtual objects. One of the important factors for realistic augmented reality is correct illumination simulation. Mobile augmented reality systems is one of the best options for introducing augmented reality to the mass market due to its low production cost and ubiquitousness. In mobile augmented reality systems, the ability to correctly simulate in realtime the illumination direction that matches the illumination direction of the real world is limited. Developing a mobile augmented reality systems with the ability to estimate illumination direction presents a challenge due to low computation power and dynamically changing environment. In this paper, we described a new method that we have developed for realtime illumination direction estimation for mobile augmented reality systems, using analysis of shadow produced by a reference object that doubles as a 3D augmented reality marker. The implementation of the method could estimate the direction of a single strong light source in a controlled environment with a very good degree of accuracy, with angular error averaging lower than 0.038 radians. The current implementation achieved 2.1 FPS performance in a low-end Android mobile device, produced proper estimation within 15 seconds using a uniform surface, and demonstrated scalability potential.
Ibrahim Arief, Simon McCallum, Jon Yngve Hardeberg, "Realtime Estimation of Illumination Direction for Augmented Reality on Mobile Devices" in Proc. IS&T 20th Color and Imaging Conf., 2012, pp 111 - 116, https://doi.org/10.2352/CIC.2012.20.1.art00020