Back to articles
Articles
Volume: 6 | Article ID: art00019
Image
Labial teeth and gingiva color image segmentation for gingival health-state assessment
  DOI :  10.2352/CGIV.2012.6.1.art00019  Published OnlineJanuary 2012
Abstract

Gingival health state assessment has always been considered of great importance in the field of dentistry. A major concern in this area is the subjectivity that commonly applied assessment methods inherit. Most of the previous approaches that aim at introducing objectivity in the assessment are based on data from photographic images of the gingival area. Nevertheless, they generally lack applicability in the clinical environment because of the requirement of expertise in image processing to perform the analysis. In this work, an enhanced teeth region segmentation scheme is proposed, based on the Self-Organizing Map algorithm. The segmentation task is the basis for further objective assessment of gingival health that can entirely be performed automatically. By introducing a novel training image selection approach, the segmentation performance of this task was increased significantly, compared to previous work. Apart from that, a newly developed spatial segmentation feature in addition to color is investigated and evaluated. The novel Labial Teeth and Gingiva Image Database of the University of Granada is used as benchmark for the segmentation scheme.

Subject Areas :
Views 26
Downloads 6
 articleview.views 26
 articleview.downloads 6
  Cite this article 

Timo Eckhard, Eva M. Valero, Juan L. Nieves, "Labial teeth and gingiva color image segmentation for gingival health-state assessmentin Proc. IS&T CGIV 2012 6th European Conf. on Colour in Graphics, Imaging, and Vision,  2012,  pp 102 - 107,  https://doi.org/10.2352/CGIV.2012.6.1.art00019

 Copy citation
  Copyright statement 
Copyright © Society for Imaging Science and Technology 2012
72010351
Conference on Colour in Graphics, Imaging, and Vision
conf colour graph imag vis
2158-6330
Society of Imaging Science and Technology
7003 Kilworth Lane, Springfield, VA 22151, USA