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Abstract
Gingival health state assessment has always been consid-

ered of great importance in the field of dentistry. A major con-
cern in this area is the subjectivity that commonly applied as-
sessment methods inherit. Most of the previous approaches that
aim at introducing objectivity in the assessment are based on
data from photographic images of the gingival area. Neverthe-
less, they generally lack applicability in the clinical environment
because of the requirement of expertise in image processing to
perform the analysis. In this work, an enhanced teeth region
segmentation scheme is proposed, based on the Self-Organizing
Map algorithm. The segmentation task is the basis for further
objective assessment of gingival health that can entirely be per-
formed automatically. By introducing a novel training image se-
lection approach, the segmentation performance of this task was
increased significantly, compared to previous work. Apart from
that, a newly developed spatial segmentation feature in addition
to color is investigated and evaluated. The novel Labial Teeth
and Gingiva Image Database of the University of Granada is used
as benchmark for the segmentation scheme.

Introduction
A subdivision of oral health care is gingival health state

assessment. This research field is mainly devoted to the
evaluation of gingival health (ideally in an objective fashion)
and the monitoring and/or analysis of a wide range of oral cavity
diseases affecting the gingivae. A very prominent amongst
these diseases is gingivitis, a form of periodontal disease which
involves inflammation and infection of the tissue that supports
the teeth. Early detection and treatment are especially important
in order to avoid gingivitis advancing to periodontitis and
eventually leading to teeth loss [1].

Research in the field of dentistry related to an objective
quantification of gingival inflammation dates back to at least
the late 1960s [2]. The severity of gingival inflammation
is historically assessed by dentists by assigning a score to
certain regions of gingivae that aims in quantifying several
visual signs of inflammation, such as redness, swelling of
gingivae, or bleeding upon probing [1, 3, 4]. A main draw-
back with such approaches is the strong subjective influence
that results from visual assessment or the manual probing
process [5, 6, 7, 8, 9, 10]. With the beginning of the digital
revolution and an increase in computational performance
in the past 20 years, several approaches for gingival health
state assessment based on digital image analysis were proposed,
which aim at obtaining a higher degree of objectivity [7, 8, 9, 11].

Most of the previous work related to teeth or gingival re-
gion segmentation from photographic images does not focus on
obtaining an automated segmentation as proposed in this article.
These studies are more interested in the medical eligibility or
usefulness of an objective approach of gingival heath state as-

sessment. For instance Smith et al. [7] investigate the reliability
of measurement of changes in gingival redness and swelling on
photographic images. Analysis of the images are carried out in a
non-automated fashion: visible gingivae is segmented from the
images with a thresholding process by means of the graphics
editing software Photoshop by Adobe Systems. Other examples
are the work by Denissen et al. [9] or that of Mansjur et al.
[11], who propose methods of reproducible image acquisition
and measurement of color characteristics of gingivae. Also
for those studies, non-automated and supervised approaches
were selected to segment gingival regions in images, based on
standard commercial software tools. Zakian et al. [8] instead
propose a method of gingival inflammation assessment based on
photographic images that follows a different approach of teeth
region segmentation. Their method involves assigning class
membership of image pixels according to some least-square
distance algorithm to either the teeth or gingiva class. The class
properties are extracted for each image manually by selecting a
small area of teeth or gingiva respectively and analysing their
color properties. Afterwards, edge detection is applied to the
binary class-membership image of teeth and gingiva in order to
extract the line contour of the gingival margin. Finally, a manual
fine-adjustment of the line-contour is performed via a graphical
user interface. The necessity of manual fine-adjustment of the
segmentation approach is a drawback when it comes to practical
aspects, as specially trained personnel would be needed at
dentist practice to perform the health state assessment.

In a previous study [12], we presented some preliminary
data on the development of an automated method of objective
gingival inflammation assessment, based on colored digital
still images. According to that method, a specific image
acquisition process for labial teeth and gingiva images (further
LTG images) was used to acquire colored digital still images
from a subject. In a second stage, teeth regions were segmented
from gingiva regions in the image. The segmentation is based
on the Self-Organizing map (further SOM) algorithm, a type
of artificial neural network that showed good performance for
the teeth region segmentation task in our previous work. The
segmented teeth and gingiva region images are the basis for
extraction of several parameters of gingival health.

In this article, a novel approach of teeth region segmenta-
tion is documented and discussed. The following section (The
SOM approach applied to image segmentation) includes a de-
tailed description of the fundamentals of the used segmentation
approach. Section Feature space selection discusses the selec-
tion of an additional spatial features for the segmentation task.
Section Training data selection introduces the training process
of the SOM, whereas segmentation performance evaluation is
discussed in section Segmentation perfromance evaluation. The
results of this work are summarized in section Results, and the
most relevant conclusions are presented in section Conclusions.
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The SOM approach applied to image seg-
mentation

The SOM algorithm is a type of artificial neural network
with the special property of effectively creating spatially orga-
nized internal representations of the input space of a set of train-
ing samples (the map). It has been studied extensively in the
past 30 years and applied to various fields of research [13, 14].
For the case of image segmentation, the input space of the map
is spanned by feature vectors, which could be color coordinates
of image pixels or any other type of image features. Spatial lo-
cations of neurons on the map then correspond to particular do-
mains of input signal patterns, which makes groups of neurons
acting as separate decoders for an input signal pattern [13].

In the present context, the SOM algorithm is used for the
task of unsupervised image classification/segmentation in a su-
pervised training scheme. The implementation used is based
on a function package that implements the SOM algorithm for
Matlab R©, called the SOM Toolbox[14]. It follows a short de-
scription on the SOM training process and the proposed approach
for images segmentation.

The learning process
A crucial property of the SOM algorithm is that neurons

are addressed as topologically related subsets during the training
process, and not independently from each other. Such behaviour
is described in biophysically inspired networks as a process of
lateral interaction and leads to a local relaxation or smoothing ef-
fect on the weight vectors of neurons in a neighbourhood and in
the long run to a global ordering. The process responsible for lat-
eral interaction is defined by a neighbourhood Nc around neuron
c and a learning rate factor α(t). Nc can be defined as a function
of time (Nc = Nc(t)), which allows the number of neurons in the
neighbourhood of c to decrease over time (see Figure 1) [13, 15].
Heuristic analysis revealed that a large Nc at the beginning of the
learning process, while monotonically decreasing Nc over time,
is advantageous. It can be concluded that a large Nc at the be-
ginning leads to a rough global ordering of weight vectors mi,
while a finer Nc in later stages improves the spatial resolution of
the map [13]. The iterative updating process of neurons during
learning is defined as

mi(t +1) =

{
mi(t)+α(t)[x(t)−mi(t)] if i ∈ Nc(t)
mi(t) if i /∈ Nc(t)

(1)

with α(t) in range 0 < α(t) < 1, for which α → 0 when
t → inf.

Initialization of weight vector mi for neuron i is performed in a
random fashion. As shown above, initially unordered vectors
will be ordered in the long run, after a reasonable amount of
runs.

The learning process of a map is traditionally applied se-
quentially: input vectors x are presented to the network and
weight vectors are updated iteratively. A much faster alterna-
tive approach that was followed in this work is batch learning,
where the whole set of input vectors is presented to the map one
at a time and new weight vectors are weighted averages of the
input vectors.

Performing segmentation
A trained map has the feature, that spatial locations of

neurons correspond to particular domains of input signal pat-
terns, as mentioned earlier. Consider a sheet-shaped map with

Figure 1. Illustration of a SOM in sheet shape and hexagonal ordering

of neurons. mi depicts the weight vector of neuron i, the colored hexagons

illustrate neighbourhood sets of neuron Nc at different moments in time.

a hexagonal local lattice topology as depicted in Figure 1. The
SOM defines a mapping from the n-dimensional input space ℜn

to the two-dimensional array of neurons. Let an input vector
x = [ξ1,ξ2, ...,ξn]T ∈ ℜn be connected to all neurons of the map
via scalar weights μi j . The response of the map to the input vec-
tor x is located where the distance between x and mi is least.
Formally, this response is defined as the location of the best-
matching neuron c, which is obtained as c = argmin

i
{‖x−mi‖},

according to the euclidean norm. In other words, each image
pixel is assigned the class label of the particular neuron on the
map that is most similar to the image pixel itself. [13, 14, 15]

Feature space selection
The input space of the SOM algorithm can include any type

of feature vector. For color image data, the most straight-forward
features are color features, namely the color coordinates of
image pixels. As the result of an empirical color space selection
in previous work, CIE-L*a*b* color space was found to cluster
teeth and non-teeth regions in LTG images best and resulted in
the lowest segmentation error [16]. Therefore, it was selected
for this work as well. Apart from color features, the usage of a
novel global spatial feature in addition to color was evaluated.
A global spatial feature applies to image content that inherits a
strong global spatial relation, as is the case for LTG images: for
instance teeth regions are by definition centred vertically and
span horizontally over the whole image. Gingival regions on the
other hand occupy regions towards the upper and lower border
and also span horizontally over the whole image. Taking this
a-priori information into account is expected to enhance image
segmentation.

Incorporating the a-priori information on global spatial
correlation of image content is performed by adding what we
call vote-features to the images. The vote feature assigns a
sort of empirically determined probability for any spatial pixel
location in an image as belonging to a certain segmentation
class, for instance the teeth-region class. Probabilities for pixel
locations are calculated from a set of spatially registered sample
images, for this work 45 in total. Formally, the vote feature for
the teeth region can be described as

Steeth(i) = {w/w = teeth,teeth ∈ I(i)} (2)

with Steeth being a set of pixels in LTG image I(i), and
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Ivote(x,y) =
N

∑
i=1

I(i)width

∑
x=1

I(i)height

∑
y=1

I(i)(x,y) ∈ Steeth (3)

where N denotes the number of all LTG images I used for
creation of the vote image Ivote and I(i)(x,y) ∈ Steeth are those
pixels in LTG image I(i) which belong to the set of teeth pixels
Steeth.

The vote features for each pixel location in an image can
be visualized spatially arranged in form of an image, as
illustrated in Figure 4 (upper right box, image on the right).

Training data selection
As mentioned earlier, the map of the SOM algorithm is

created in an iterative learning process. A main premise of
the training process is, that training data is selected as such to
represent most closely the data that will be segmented in a later
stage. Following such selection, a good generalization of the
training process can be achieved, i.e., the classifier is expected
to perform well for samples that differ from those of the
training set [17]. Commonly applied methods for training data
selection are for instance random selection, multiple training or
cross-validation [18].

The training data selection for this work is based on a
two-stage approach that involves some empirical analysis of a
set of available training data. First, from the set of 45 images
available for training, those images are selected, that inherit
most information amongst the set. The second stage is to
condense data samples from the selected images, in order to
reduce redundant information and further speed up the training
process.

Stage 1: Image selection The image selection task aims at
finding such images that inherit the most important
information for the training of a map. Information in here
refers to color information, namely the color coordinates
of an image pixel in CIE-L*a*b* color space, as this data
is used for the classification process. Therefore, in this
context the image that inherits most information from a
set of images can be defined as the image with the most
deviant color coordinates amongst all images, according
to some color difference formula. A straight-forward
approach would be an iterative comparison of each pixel in
an image with any other pixel of all images of the set and
accumulating the resulting color differences. However, for
the amount of available training samples, this approach is
computationally expensive and impractical.

The novel approach proposed in this work is to com-
pare similarities of images according to their color
histogram signature. Therefore, similarity between images
is computed by comparing the color histograms of the
images. The less similar, or the more un-similar an image
is, as compared with all other images of a set, the more
information is contained and therefore the more suitable it
is for training.

A color histogram for an image is a discrete function
�h(rk) = nk , where rk is the k-th intensity value and nk is

the number of pixels in the image with intensity rk [19].
For this work, image histograms are being normalized over

the amount of pixels in an image in order to allow com-
parison of histograms from images of different size. Such
normalization is obtained by dividing each component of
the histogram by the total amount of pixels in the image.
The normalized image histogram is then computed as

�h(rk) =
nk

M ∗N
(4)

with M and N being the image width and height respec-
tively. The cosine similarity between two color histograms
�h1,�h2 is computed as

sim(�h1, �h2) =
�h1 ∗ �h2

|�h1||�h2|
(5)

where the numerator represents the dot product of the vec-
tors �h1 and �h2 and the denominator being the product of
their Euclidean norm. A cosine similarity of one refers to
an angle of 0 degree between the color histograms of two
images and therefore to images that have an equal amount
of pixels in each bin of the histogram. A cosine similarity
of zero refers to images that are maximally different.
For the case of training image selection, an iteration is per-
formed over the whole set of images. For each candidate
image, the cosine similarity between its histogram and the
histograms of the remaining images is computed. This ap-
proach allows an ordering of similarities of images, based
on the sum of cosine similarities S within the set of all im-
ages, defined as

S(�hc) =
n

∑
i=1

sim(�hc,�hi) (6)

with n being the number of histograms in the set, �hi the i-
th histogram and �hc being the candidate histogram for S. A
great advantage of this novel approach is, that color- as well
as spatial-properties are included in the selection process,
as the frequency of occurrence of individual colors is taken
into account as well as the occurrence of a color itself (see
Figure 2).

Stage 2: Data sample condensation An average sample image
from the set of available images for training consists of
about half a million pixels. As such images are captured
in a rather high resolution, it is expected that they inherit
a lot of redundant information. Aiming to minimize the
number of pixels selected for the SOM training, a simple
random selection is applied for each individual image. For
this work, a fraction of 20% randomly selected, equal dis-
tributed data points was empirically found to perform well.

Segmentation performance evaluation
Segmentation performance in this context refers solely to

the segmentation quality that can be obtained for the given image
segmentation task and not to computational complexity or com-
putational performance. The reason for this is that the analysis
of images for gingival health state assessment is not necessarily
a time-critical process.

Error measure
The performance of image segmentation in terms of seg-

mentation quality is computed as the sum of percentage of pix-
els of teeth classified wrongly as non-teeth and percentage of
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Figure 2. Optimal training images and corresponding summed cosine

similarities: the smaller the summed cosine similarity, the more different the

image (in terms of its color histogram signature, compared with the remain-

ing images).

pixels of non-teeth classified wrongly as teeth (discrepancy em-
pirical quality measure [20]), compared to manual segmented
groundtruth of individual images. The measure can be described
formally for the two-class case, for instance for class 1 as

Ec1 = ∑i∈c2 Sc1(i)
∑i∈c1 GTc1(i)

+ ∑i∈c1 Sc2(i)
∑i∈c2 GTc2(i)

(7)

with S being the class labelled image for class c1 and c2,
and GT its manually class labelled counterpart. i ∈ cn are the in-
dexes of pixels in an image belonging to class n and the resulting
relative error for class c1 is depicted as Ec1.

Labial Teeth and Gingiva image database
In order to assess the segmentation quality of the SOM ap-

proach, a novel image database of LTG images from the Univer-
sity of Granada in Spain was used as benchmark. The initial ver-
sion of the so called Labial Teeth and Gingiva Image Database
(further LTG-IDB) consists of several GBs of photographic im-
ages from 27 subjects with normal oral health. For the task of
teeth and non-teeth region segmentation, groundtruth image data,
manually segmented from one expert observer, is included. More
details on the image database can be found from the technical re-
port at [21].

An important feature of this database is that all images were
acquired in a well-defined and documented image acquisition
process, optimized for LTG image capturing. Given the static
image acquisition parameters, it can be expected that an image
segmentation performance evaluation based on this database in-
herits a high degree of generality for images that are captured in
a similar manner, even if they are not included in the database.

Another advantage of using this database is the fact that it is
rendered publicly available under a creative common license and
can therefore be used by others as well, for instance as bench-
mark for similar tasks.

Results
Training image selection

The selection of an optimal set of training images was
performed on a set of 45 images from the LTG-IDB. The number
of optimal training images for the SOM segmentation process
was empirically found to be 9. Those images with corresponding
summed color histogram similarities are illustrated in Figure 2.

The novel approach of training image selection has the
special property of incorporating spatial as well as color
information. This behaviour can be illustrated in an artificial

Table 1: Segmentation error statistics in the feature selection
process: μ refers to the mean segmentation error, σ its stan-
dard deviation, 95e the 95th-percentil and min.error/max.error
the images with the minimum and maximum segmentation er-
ror respectively

error measure color color + init. vote color + enh. vote

μ (%) 2.09 3.34 3.19
σ (%) 0.43 1.11 0.89

95e (%) 2.74 4.66 4.83
min. error (%) 1.37 1.17 1.17
max. error (%) 3.49 6.49 5.26

example: Figure 3 (upper box left) shows a sample LTG image.
In the other images of this box (middle and right), the tooth size
was artificially expanded to two different levels respectively,
without introducing new colors. The cosine similarity between
(left) and (middle) is 0.9492, whereas 0.9184 can be found
between (left) and (right). That means that the larger the
difference in teeth area in the image, the less similar they are. So
the similarity of the color histogram is influenced by the spatial
content, in this example the tooth size.

A similar behaviour can be shown for changes that are only
applied to the color of the images, while maintaining spatial
properties. Figure 3 (lower box) illustrates an example where
image saturation was modified in two levels. The cosine simi-
larity between the original image (left) and (middle) is 0.7527,
whereas 0.6604 can be found between (left) and (right).

Figure 3. Upper box: spatial information dependency of color histogram

similarity: (left) sample LTG image, (middle) expanded teeth region, (right)

further expanded teeth region; Lower box: color information dependency

of color histogram similarity: (left) sample LTG image, (middle) slightly in-

creased saturation, (right) heavily increased saturation.

Feature space selection
Feature space selection was evaluated by performing image

segmentation for the whole set of 45 available LTG images from
the LTG-IDB, first with color-only features and then with color
and an initial version of the vote feature. Also, an enhanced ver-
sion of the vote feature that is being introduced a bit later, was
evaluated. The segmentation error was calculated according to
Equation 7 and the map was trained from the optimal training
images as described in the previous section.

Column 2 and 3 of Table 1 summarize the segmentation
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Figure 4. Examples of assets and drawbacks of color and vote feature

selection.

quality achieved with the two feature set combinations. Ap-
parently, color only features outperformed the color and vote
feature combination. This is surprising, as it was expected that
the additional information of global spatial correlation of LTG
images could enhance image segmentation. However, a closer
look on the resulting segmented images gives an insight in the
assets and drawbacks of this approach. Figure 4 (upper left box),
for instance, illustrates a case where incorporating the spatial
feature increases the segmentation performance, compared to
using only color features. It can be seen that segmentation based
on color-only features (left image) is erroneous for some pixels
far apart from the expected location of teeth in an LTG image.
The miss-classification is due to the color properties of these
pixels, which are close to what is expected to belong to the teeth
class but obviously belong to the non-teeth class. Incorporating
the spatial feature (right image) restricts most of these pixels to
be classified as teeth, as the spatial location of the pixels differs
too much from the teeth region location in the vote image (see
Figure 4, .

A main drawback from using the spatial feature in its ini-
tial version can be observed in Figure 4 (upper right box): a
very high rate of miss-classification occurs on the left and right
side of most images. The reason for this can be traced back to
the design of the vote image. As explained in section Feature
space selection, votes are collected from sample images for
every pixel that belongs to the teeth class. As the size of jaws of
individual subjects vary, creating the vote feature as explained
earlier leads to a rather fuzzy representation for spatial locations
at the horizontal extremes of the images. A way to account
for this effect is to modify the vote image in these regions, for
instance as illustrated in Figure 4 (lower right box, image on the
right). For the illustrated sample image (upper and lower box on
the right side, left image) a decrease in segmentation error can
be observed when using the modified version of the vote image.
Measuring the performance of the whole set of images with
the modified vote feature reveals the same results (see Table 1,
column 4).

Another observation can be drawn from Figure 4 (lower
left box). The tooth shapes of this sample image deviate
strongly from the tooth shapes of most other images that were
used for creation of the vote feature. This fact leads to a high
miss-classification rate for pixels in spatial locations of the
image, where the probability for teeth occurrence is small, in
accordance to the vote image. It is very likely possible to reduce
this kind of error if a larger set of sample images is included in
the vote feature creation process. It is expected that by doing
so, using color and vote features could outperform the usage of
color-only features. We plan to investigate this aspect in future
work.

Table 2: Comparison of segmentation error statistics from
previous and current results of the teeth segmentation pro-
cess: μ refers to the mean segmentation error, σ its standard
deviation, 95e the 95th-percentil and min.error/max.error the
images with the minimum and maximum segmentation error
respectively

previous result current result

μ (%) 5.09 2.09
σ (%) 0.94 0.43

95e (%) 6.66 2.74
min. error (%) 3.20 1.37
max. error (%) 7.38 3.49

Enhancement in segmentation quality for the
teeth region segmentation from previous results

In our previous studies [12], the SOM algorithm was used in
standard configuration as provided by the SOM Tooolbox. That
means that the map was constructed in rectangular map lattice
and no post-processing applied to the SOM segmented images.
Apart from that, training images were selected in a random fash-
ion for the set of 45 sample images of the LTG-IDB. Following
this approach resulted in a mean segmentation error of 5.09%
with the 95th-percentil of 6.66% (see Table 2, left column). For
this work, using the optimal set of training images and a map
built using hexagonal map lattice with a simple binary close post-
processing operation on the binary class label image after seg-
mentation could improve the results of the segmentation process
impressively. The remaining segmentation error is found to be
2.09% with the 95th-percentil of 1.35% (see Table 2, right col-
umn).

It is worth discussing if it proves useful to try to decrease the
remaining mean segmentation error further by modifying train-
ing process, feature space selection or the SOM algorithm pa-
rameters, or if main changes on the design of the experiment are
required. Such changes could for instance be capturing new LTG
image data or obtaining additional groundtruth information.

Capturing new LTG image data would be an important step
in order to assess the generality of the segmentation performance,
for a data set with an (expected) larger variability. Obtaining ad-
ditional groundtruth information on the other hand is a critical
step that should be considered in any case. It has been mentioned
earlier that the segmentation error is quantified as compared to
manually segmented groundtruth data. The manual segmenta-
tion for the currently available data set of 45 LTG images has
been performed by one expert observer only, namely the first au-
thor of this work. An underlying subjectivity is therefore certain,
which makes quite doubtful that enhancing the segmentation fur-
ther is really possible. The remaining approximately 2% mean
segmentation error might well be near the uncertainty threshold
of the groundtruth data, due to subjectivity. If that is the case, a
further enhancement could not be measured based on the avail-
able groundtruth data. One way to escape this limitation would
be to collect more opinions on groundtruth segmentation for the
current data set from other observers and to compare them on a
statistical basis, forming a mean groundtruth. Following such ap-
proach could lead to a more general solution for the groundtruth
data and also allow to estimate a groundtruth uncertainty, which
would be the inter-observer variance. This aspect shall be treated
in future work.
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Conclusions

In this work, teeth-region segmentation, a particularly
important problem in the process of creating an automated
and objective method of gingival health-state assessment, is
discussed. The image segmentation task is performed in an
unsupervised fashion with supervised training, based on the
SOM algorithm. A novel training image selection method
is proposed, which aims at quantifying spatial and color
differences in image content, based on a color image histogram
similarity criterion. According to the optimal training image
selection from maximally different images, a map with a high
degree of generality could be obtained. Usage of this map led
to an increase in performance for the teeth region segmentation
process of more than 50%. The training image selection and
image segmentation performance were evaluated with images
from the LTG-IDB, a novel database of images of labial teeth
and gingiva, created and rendered publicly available by the
University of Granada. Apart from proposing the novel training
image selection scheme, incorporating a global spatial feature
in addition to color features in the segmentation process is
evaluated. The so-called vote feature takes into account a-priori
information on the spatial distribution of image content for
segmentation. The performance of using spatial and color
features versus color features is evaluated by quantifying the
resulting segmentation error. It was found that color features
outperform color and spatial features in the current set-up.
However, the authors believe that this might be due to the fact
that the vote feature lacks some generality, as the set of images
used for extraction of the latter is only 45. It is expected, that
vote and color feature can outperform color only features, if a
larger number of images for creation of this feature would be
available.

Finally, the performance of the optimized segmentation
approach as presented in this work is compared with previous
results for the same segmentation task. The previous mean
segmentation error of 5.09% for the teeth segmentation task
could be enhanced further to a remaining error of 2.09%, which
is believed to be close to what is expected to be the residual error
in the groundtruth image data that was used for performance
evaluation.
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of Saint-Étienne (France) within the framework of the International
Erasmus Mundus Master Program CIMET (Color in Informatics and

Media Technology). Timo is currently a Ph.D. student and member of
the Color Imaging Lab at the Optics Department of the University of
Granada. His research affiliations are Multispectral Science, Color

Science and Image Processing.

Eva M. Valero obtained a B.D. in Physics in 1995, and a Ph.D.
in 2000, both at the University of Granada. She has worked at the

Department of Optics as Associate Prof. since 2001. Shes a member
of the Color Imaging Lab at the University of Granada. Her research
interests were initially spatial color vision, and more recently multispec-

tral imaging and color image processing.

Juan Luis Nieves received his M.Sc. and Ph.D. in Physics from

University of Granada, Granada, Spain, in 1991 and 1996, respectively.
He is currently an associate professor at the Department of Optics in
the Science Faculty, University of Granada. At present his research in

the Color Imaging Lab at the Department of Optics revolves around
computational color vision (color constancy, human visual system
processing of spatio-chromatic information), and spectral analysis of

color images.

CGIV 2012 Final Program and Proceedings 107




