Caustics projected onto the surface carry very interesting information regarding the material they are cast by. It has been observed in previous studies that caustics could be a widely used cue for translucency assessment by human subjects. We hypothesize that changing the reflectance properties of the surface an object is placed on, and removal of the caustic pattern might impact perceived translucency of the material. We conducted psychophysical experiments to investigate the correlation among caustics, environment colors and translucency perception, and found very interesting indications that materials appear less translucent under the conditions where caustics are absent.
Translucency is a visual property attributed to objects that light may cross without transmitting a clear image of the scene which is behind. In absence of a more precise definition, this perceptual attribute is often considered as an intermediate between transparency, which is the property of objects that light may cross by transmitting a clear image of the scene behind, and opacity, which is the property of blocking the transmission of light and therefore masking completely the scene behind. If it is rather clear that translucency is closely related to light scattering, it is difficult to classify the translucent appearance according to one scale only, due to the different types of scattering, which can occur as well as the role of absorbance and thickness of the material. Through synthetic images rendered by optical models, we show that surface scattering, volume (or subsurface) scattering, possibly mixed with selective absorption, produce different types of translucency effects and different intermediates between transparency and opacity. We thus propose to represent translucency according to three axes related to these three optical phenomena: surface scattering, volume scattering, and absorption.