Translucency is a visual property attributed to objects that light may cross without transmitting a clear image of the scene which is behind. In absence of a more precise definition, this perceptual attribute is often considered as an intermediate between transparency, which is the property of objects that light may cross by transmitting a clear image of the scene behind, and opacity, which is the property of blocking the transmission of light and therefore masking completely the scene behind. If it is rather clear that translucency is closely related to light scattering, it is difficult to classify the translucent appearance according to one scale only, due to the different types of scattering, which can occur as well as the role of absorbance and thickness of the material. Through synthetic images rendered by optical models, we show that surface scattering, volume (or subsurface) scattering, possibly mixed with selective absorption, produce different types of translucency effects and different intermediates between transparency and opacity. We thus propose to represent translucency according to three axes related to these three optical phenomena: surface scattering, volume scattering, and absorption.