Coherent anti-Stokes Raman scattering (CARS) microspectroscopy is a powerful tool for label-free cell imaging thanks to its ability to acquire a rich amount of information. An important family of operations applied to such data is multivariate curve resolution (MCR). It aims to find main components of a dataset and compute their spectra and concentrations in each pixel. Recently, autoencoders began to be studied to accomplish MCR with dense and convolutional models. However, many questions, like the results variability or the reconstruction metric, remain open and applications are limited to hyperspectral imaging. In this article, we present a nonlinear convolutional encoder combined with a linear decoder to apply MCR to CARS microspectroscopy. We conclude with a study of the result variability induced by the encoder initialization.
According to Cisco, most Internet traffic is currently comprised of videos. Therefore, developing a quality assessment method for assuring that those videos are received and displayed with quality at the user side is an important and challenging task. As a consequence, over the last decades, several no-reference video quality metrics have been proposed with the goal of blindly predicting (with no access to the original signal) the quality of videos in streaming applications. One of such metrics is NAVE, whose architecture includes an auto-encoder module that produces a compact set of visual features with a higher descriptive capacity. Nevertheless, the visual features in NAVE do not include descriptive temporal features that are sensitive to temporal degradation. In this work, we analyze the effect on accuracy performance of using a new type of temporal features, based on natural scene statistics. This approach has the goal of making the tested video quality metric more generic, i.e. sensitive to both spatial and temporal distortions and therefore adequate for video streaming applications.