We have developed a system to measure both the optical properties of facial skin and the three-dimensional shape of the face. To measure the three-dimensional facial shape, our system uses a light-field camera to provide a focused image and a depth image simultaneously. The light source uses a projector that produces a high-frequency binary illumination pattern to separate the subsurface scattering and surface reflections from the facial skin. Using a dichromatic reflection model, the surface reflection image of the skin can be separated further into a specular reflection component and a diffuse reflection component. Verification using physically controlled objects showed that the separation of the optical properties by the system correlated with the subsurface scattering, specular reflection, or diffuse reflection characteristics of each object. The method presented here opens new possibilities in cosmetology and skin pharmacology for measurement of the skin's gloss and absorption kinetics and the pharmacodynamics of various external agents.
This paper presents a novel approach for a position verification system in medical applications. By replacing the already existing cross line laser projectors with galvo- or MEMS-based projectors and utilizing the surveillance cameras, a self-calibration of the system is performed and surface acquisition for positioning verification is demonstrated. The functionality is shown by analyzing the radii of calibration spheres and determining the quality of the captured surface with respect to a reference model. The paper focuses on the demonstration with one pair of camera and projector but can also be extended to a multi-camera-projector system, as present in treatment rooms. Compared to other systems, this approach does not need external hardware and is thus space and cost efficient.