References
1AmirshahiS. A.PedersenM.YuS. X.2016Image quality assessment by comparing CNN features between imagesJ. Imaging Sci. Technol.60060410-1060410-10060410-1–060410-1010.2352/J.ImagingSci.Technol.2016.60.6.060410
2ArjovskyM.ChintalaS.BottouL.2017Wasserstein generative adversarial networksInt’l. Conf. on Machine Learning214223214–23PMLR
3BauD.ZhuJ.-Y.WulffJ.PeeblesW.StrobeltH.ZhouB.TorralbaA.2019Seeing what a gan cannot generateProc. IEEE/CVF Int’l. Conf. on Computer Vision450245114502–11IEEEPiscataway, NJ10.1109/ICCV.2019.00460
4BirnbaumM. H.2004Human research and data collection via the internetAnnu. Rev. Psychol.55803832803–3210.1146/annurev.psych.55.090902.141601
5BislaD.ChoromanskaA.BermanR. S.SteinJ. A.PolskyD.2019Towards automated melanoma detection with deep learning: Data purification and augmentationProc. IEEE/CVF Conf. on Computer Vision and Pattern Recognition Workshops000–IEEEPiscataway, NJ10.1109/CVPRW.2019.00330
6BissotoA.PerezF.ValleE.AvilaS.2018Skin lesion synthesis with generative adversarial networksOR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Orocedures, and Skin Image Analysis294302294–302SpringerCham10.1007/978-3-030-01201-4_32
7BissotoA.ValleE.AvilaS.2021Gan-based data augmentation and anonymization for skin-lesion analysis: A critical reviewProc. IEEE/CVF Conf. on Computer Vision and Pattern Recognition184718561847–56IEEEPiscataway, NJ10.1109/CVPRW53098.2021.00204
8BowyerK.KopansD.KegelmeyerW.MooreR.SallamM.ChangK.WoodsK.1996The digital database for screening mammographyThird Int’l. Workshop on Digital MammographyVol. 5827ElsevierAmsterdam
9BrockA.DonahueJ.SimonyanK.
10CaoB.ZhangH.WangN.GaoX.ShenD.2020Auto-gan: self-supervised collaborative learning for medical image synthesisProc. AAAI Conf. on Artificial IntelligenceVol. 34104861049310486–93AAAIPalo Alto, CA10.1609/AAAI.V34I07.6619
11CarmodyD. P.NodineC. F.KundelH. L.1980An analysis of perceptual and cognitive factors in radiographic interpretationPerception9339344339–4410.1068/p090339
12CarmodyD. P.NodineC. F.KundelH. L.1981Finding lung nodules with and without comparative visual scanningPerception Psychophysics29594598594–810.3758/BF03207377
13ChenX.DuanY.HouthooftR.SchulmanJ.SutskeverI.AbbeelP.2016Infogan: interpretable representation learning by information maximizing generative adversarial netsAdvances in neural information processing systemsVol. 29218021882180–8Morgan KaufmannSan Francisco, CA
14CicchettiD. V.1994Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychologyPsychological Assess.628410.1037/1040-3590.6.4.284
15CrumpM. J.McDonnellJ. V.GureckisT. M.2013Evaluating amazon’s mechanical turk as a tool for experimental behavioral researchPloS One8e5741010.1371/journal.pone.0057410
16DrewT.EvansK.VõM. L.-H.JacobsonF. L.WolfeJ. M.2013Informatics in radiology: what can you see in a single glance and how might this guide visual search in medical images?Radiographics33263274263–7410.1148/rg.331125023
17DumoulinV.ShlensJ.KudlurM.
18EvansK. K.Georgian-SmithD.TambouretR.BirdwellR. L.WolfeJ. M.2013The gist of the abnormal: Above-chance medical decision making in the blink of an eyePsychonomic Bull. Rev.20117011751170–510.3758/s13423-013-0459-3
19EvansK. K.HaygoodT. M.CooperJ.CulpanA.-M.WolfeJ. M.2016A half-second glimpse often lets radiologists identify breast cancer cases even when viewing the mammogram of the opposite breastProc. Natl. Acad. Sci.113102921029710292–710.1073/pnas.1606187113
20FleissJ. L.1986Reliability of measurementThe Design and Analysis of Clinical ExperimentsJohn Wiley & SonsHoboken, NJ
21FleissJ. L.Design and Analysis of Clinical Experiments2011Vol. 73John Wiley & SonsHoboken, NJ
22Frid-AdarM.DiamantI.KlangE.AmitaiM.GoldbergerJ.GreenspanH.2018Gan-based synthetic medical image augmentation for increased cnn performance in liver lesion classificationNeurocomputing321321331321–3110.1016/j.neucom.2018.09.013
23FukushimaK.1979Neural network model for a mechanism of pattern recognition unaffected by shift in position-neocognitronIEICE Tech. Rep. A62658665658–65
24GaleA.VernonJ.MillerK.WorthingtonB.1990Reporting in a flashBr. J. Radiol.6371
25GatysL. A.EckerA. S.BethgeM.2015Texture synthesis using convolutional neural networksProc. 28th Int’l. Conf. on Neural Information Processing Systems-Volume 1262270262–70Morgan KaufmannSan Francisco, CA
26GhorbaniA.NatarajanV.CozD.LiuY.2020Dermgan: Synthetic generation of clinical skin images with pathologyMachine Learning for Health Workshop155170155–70PMLRCambridge, MA
27GirshickR.2015Fast r-cnnProc. IEEE Int’l. Conf. on Computer Vision144014481440–8IEEEPiscataway, NJ10.1109/ICCV.2015.169
28GirshickR.DonahueJ.DarrellT.MalikJ.2014Rich feature hierarchies for accurate object detection and semantic segmentationProc. IEEE Conf. on Computer Vision and Pattern Recognition580587580–7IEEEPiscataway, NJ10.1109/CVPR.2014.81
29GoodfellowI.Pouget-AbadieJ.MirzaM.XuB.Warde-FarleyD.OzairS.CourvilleA.BengioY.2014Generative adversarial netsAdvances in Neural Information Processing Systems27
30GulrajaniI.AhmedF.ArjovskyM.DumoulinV.CourvilleA. C.2017Improved training of wasserstein gansAdvances in Neural Information Processing Systems30
31HanC.HayashiH.RundoL.ArakiR.ShimodaW.MuramatsuS.FurukawaY.MauriG.NakayamaH.2018Gan-based synthetic brain mr image generation2018 IEEE 15th Int’l. Symposium on Biomedical Imaging (ISBI 2018)734738734–8IEEEPiscataway, NJ10.1109/ISBI.2018.8363678
32HeK.GkioxariG.DollárP.GirshickR.2017Mask r-cnnProc. IEEE Int’l. Conf. on Computer Vision296129692961–9IEEEPiscataway, NJ10.1109/ICCV.2017.322
33HeK.ZhangX.RenS.SunJ.2016Deep residual learning for image recognitionProc. IEEE Conf. on Computer Vision and Pattern Recognition770778770–8IEEEPiscataway, NJ10.1109/CVPR.2016.90
34HesamianM. H.JiaW.HeX.KennedyP.2019Deep learning techniques for medical image segmentation: achievements and challengesJ. Digit. Imaging32582596582–9610.1007/s10278-019-00227-x
35HoughtonJ. P.SmollerB. R.LeonardN.StevensonM. R.DornanT.2015Diagnostic performance on briefly presented digital pathology imagesJ. Pathol. Inform.610.4103/2153-3539.168517
36HuangX.BelongieS.Arbitrary style transfer in real-time with adaptive instance normalizationProc. IEEE Int’l. Conf. on Computer Vision2017IEEEPiscataway, NJ150115101501–1010.1109/ICCV.2017.167
37HuangX.LiuM.-Y.BelongieS.KautzJ.2018Multimodal unsupervised image-to-image translationProc. European Conf. on Computer Vision (ECCV)172189172–89SpringerCham
38HubelD.WieselT.1959Receptive fields of single neurones in the cat’s striate cortexJ. Physiol.14857410.1113/jphysiol.1959.sp006308
39JaarsmaT.JarodzkaH.NapM.van MerrienboerJ. J.BoshuizenH. P.2014Expertise under the microscope: Processing histopathological slidesMed. Educ.48292300292–30010.1111/medu.12385
40JohnsonJ.AlahiA.Fei-FeiL.2016Perceptual losses for real-time style transfer and super-resolutionEuropean Conf. on Computer Vision694711694–711SpringerCham
41KarrasT.AilaT.LaineS.LehtinenJ.Progressive growing of GANs for improved quality, stability, and variationInt’l. Conf. on Learning Representations2018
42KarrasT.LaineS.AilaT.2019A style-based generator architecture for generative adversarial networksProc. IEEE/CVF Conf. on Computer Vision and Pattern Recognition440144104401–10IEEEPiscataway, NJ10.1109/CVPR.2019.00453
43KarrasT.LaineS.AittalaM.HellstenJ.LehtinenJ.AilaT.2020Analyzing and improving the image quality of styleganProc. IEEE/CVF Conf. on Computer Vision and Pattern Recognition811081198110–9IEEEPiscataway, NJ10.1109/CVPR42600.2020.00813
44KayalibayB.JensenG.van der SmagtP.
45KingmaD. P.BaJ.
46Kompaniez-DuniganE.AbbeyC. K.BooneJ. M.WebsterM. A.2015Adaptation and visual search in mammographic imagesAttention Perception Psychophysics77108110871081–710.3758/s13414-015-0841-5
47KrizhevskyA.SutskeverI.HintonG. E.Imagenet classification with deep convolutional neural networksAdvances in Neural Information Processing Systems2012Vol. 25Morgan KaufmannSan Francisco, CA109711051097–105
48KundelH. L.NodineC. F.1975Interpreting chest radiographs without visual searchRadiology116527532527–3210.1148/116.3.527
49LeCunY.BottouL.BengioY.HaffnerP.1998Gradient-based learning applied to document recognitionProc. IEEE86227823242278–32410.1109/5.726791
50LedigC.TheisL.HuszárF.CaballeroJ.CunninghamA.AcostaA.AitkenA.TejaniA.TotzJ.WangZ.ShiW.2017Photo-realistic single image super-resolution using a generative adversarial networkProc. IEEE Conf. on Computer Vision and Pattern Recognition468146904681–90IEEEPiscataway, NJ10.1109/CVPR.2017.19
51LitjensG.KooiT.BejnordiB. E.SetioA. A. A.CiompiF.GhafoorianM.Van Der LaakJ. A.Van GinnekenB.SánchezC. I.2017A survey on deep learning in medical image analysisMed. Image Anal.42608860–8810.1016/j.media.2017.07.005
52ManassiM.KristjánssonÁ.WhitneyD.2019Serial dependence in a simulated clinical visual search taskSci. Rep.91101–1010.1038/s41598-019-56315-z
53MasciJ.MeierU.CireşanD.SchmidhuberJ.2011Stacked convolutional auto-encoders for hierarchical feature extractionInt’l. Conf. on Artificial Neural Networks525952–9SpringerBerlin, Heidelberg
54MirzaM.OsinderoS.
55MugglestoneM. D.GaleA. G.CowleyH. C.WilsonA.1995Diagnostic performance on briefly presented mammographic imagesProc. SPIE243610.1117/12.206840
56NakashimaR.KobayashiK.MaedaE.YoshikawaT.YokosawaK.2013Visual search of experts in medical image reading: the effect of training, target prevalence, and expert knowledgeFrontiers Psychol.416610.3389/fpsyg.2013.00166
57NieD.TrulloR.LianJ.PetitjeanC.RuanS.WangQ.ShenD.2017Medical image synthesis with context-aware generative adversarial networksInt’l. Conf. on Medical Image Computing and Computer-Assisted Intervention417425417–25SpringerCham
58OdenaA.OlahC.ShlensJ.2017Conditional image synthesis with auxiliary classifier gansInt’l. Conf. on Machine Learning264226512642–51PMLRCambridge, MA
59OestmannJ.GreeneR.KushnerD.BourgouinP.LinetskyL.LlewellynH.1988Lung lesions: correlation between viewing time and detectionRadiology166451453451–310.1148/radiology.166.2.3336720
60ParkT.LiuM.-Y.WangT.-C.ZhuJ.-Y.2019Semantic image synthesis with spatially-adaptive normalizationProc. IEEE/CVF Conf. on Computer Vision and Pattern Recognition233723462337–46IEEEPiscataway, NJ10.1109/CVPR.2019.00244
61RadfordA.MetzL.ChintalaS.
62RajanandaS.PetersM. A.LauH.OdegaardB.2018Visual psychophysics on the web: open-access tools, experiments, and results using online platformsJ. Vis.18299299299–10.1167/18.10.299
63RanzatoM.HuangF. J.BoureauY.-L.LeCunY.2007Unsupervised learning of invariant feature hierarchies with applications to object recognition2007 IEEE Conf. on Computer Vision and Pattern Recognition181–8IEEEPiscataway, NJ
64RedmonJ.DivvalaS.GirshickR.FarhadiA.2016You only look once: Unified, real-time object detectionProc. IEEE Conf. on Computer Vision and Pattern Recognition779788779–88IEEEPiscataway, NJ
65RenS.HeK.GirshickR.SunJ.2015Faster r-cnn: Towards real-time object detection with region proposal networksAdvances in Neural Information Processing Systems28
66RenZ.YuS. X.WhitneyD.Controllable medical image generation via generative adversarial networksIS&T Electronic Imaging: Human Vision and Electronic Imaging2021Vol. 2021IS&TSpringfield, VA112–1112–5112–1–510.2352/ISSN.2470-1173.2021.11.HVEI-112
67SemmelmannK.WeigeltS.2017Online psychophysics: Reaction time effects in cognitive experimentsBehav. Res. Methods49124112601241–6010.3758/s13428-016-0783-4
68ShenD.WuG.SukH.-I.2017Deep learning in medical image analysisAnnu. Rev. Biomed. Eng.19221248221–4810.1146/annurev-bioeng-071516-044442
69SheridanH.ReingoldE. M.2017The holistic processing account of visual expertise in medical image perception: A reviewFrontiers Psychol.8162010.3389/fpsyg.2017.01620
70ShinH.-C.RothH. R.GaoM.LuL.XuZ.NoguesI.YaoJ.MolluraD.SummersR. M.2016Deep convolutional neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learningIEEE Trans. Med. Imaging35128512981285–9810.1109/TMI.2016.2528162
71SimonyanK.ZissermanA.
72SzegedyC.LiuW.JiaY.SermanetP.ReedS.AnguelovD.ErhanD.VanhouckeV.RabinovichA.2015Going deeper with convolutionsProc. IEEE Conf. on Computer Vision and Pattern Recognition191–9IEEEPiscataway, NJ10.1109/CVPR.2015.7298594
73SzegedyC.VanhouckeV.IoffeS.ShlensJ.WojnaZ.2016Rethinking the inception architecture for computer visionProc. IEEE Conf. on Computer Vision and Pattern Recognition281828262818–26IEEEPiscataway, NJ10.1109/CVPR.2016.308
74TreviñoM.BirdsongG.CarriganA.ChoykeP.DrewT.EcksteinM.FernandezA.GallasB. D.GigerM.HewittS. M.HorowitzT. S.JiangY. V.KudrickB.Martinez-CondeS.MitroffS.NebelingL.SaltzJ.SamuelsonF.SeltzerS. E.ShabestariB.ShankarL.SiegelE.TilkinM.TruebloodJ. S.DykeA. L. V.VenkatesanA. M.WhitneyD.WolfeJ. M.2022Advancing research on medical image perception by strengthening multidisciplinary collaborationJNCI Cancer Spectrum6pkab09910.1093/jncics/pkab099
75TruebloodJ. S.EichbaumQ.SeegmillerA. C.StrattonC.O’DanielsP.HolmesW. R.2021Disentangling prevalence induced biases in medical image decision-makingCognition21210471310.1016/j.cognition.2021.104713
76TruebloodJ. S.HolmesW. R.SeegmillerA. C.DoudsJ.ComptonM.SzentirmaiE.WoodruffM.HuangW.StrattonC.EichbaumQ.2018The impact of speed and bias on the cognitive processes of experts and novices in medical image decision-makingCogn. Res.: Princ. Implications31141–1410.1186/s41235-017-0085-0
77WagnerR. F.BrownD. G.1985Unified snr analysis of medical imaging systemsPhys. Med. Biol.3048910.1088/0031-9155/30/6/001
78WaiteS.GrigorianA.AlexanderR. G.MacknikS. L.CarrascoM.HeegerD. J.Martinez-CondeS.2019Analysis of perceptual expertise in radiology–current knowledge and a new perspectiveFrontiers Hum. Neurosci.1321310.3389/fnhum.2019.00213
79WaiteS.ScottJ.GaleB.FuchsT.KollaS.ReedeD.2017Interpretive error in radiologyAm. J. Roentgenol.208739749739–4910.2214/AJR.16.16963
80WilleminkM. J.KoszekW. A.HardellC.WuJ.FleischmannD.HarveyH.FolioL. R.SummersR. M.RubinD. L.LungrenM. P.2020Preparing medical imaging data for machine learningRadiology2954154–1510.1148/radiol.2020192224
81WilliamsL. H.DrewT.2019What do we know about volumetric medical image interpretation?: A review of the basic science and medical image perception literaturesCogn. Res. Princ. Implications41241–2410.1186/s41235-018-0149-9
82WolfeJ. M.HorowitzT. S.2017Five factors that guide attention in visual searchNature Hum. Behav.1181–810.1038/s41562-016-0001
83YanK.WangX.LuL.SummersR. M.2018Deeplesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learningJ. Med. Imaging503650110.1117/1.JMI.5.3.036501
84ZbontarJ.KnollF.SriramA.MurrellT.HuangZ.MuckleyM. J.DefazioA.SternR.JohnsonP.BrunoM.ParenteM.
85ZhangB.SrihariS. N.2003Properties of binary vector dissimilarity measuresProc. JCIS Int’l. Conf. Computer Vision, Pattern Recognition, and Image ProcessingVol. 1SpringerCham
86ZhangJ.XieY.WuQ.XiaY.2019Medical image classification using synergic deep learningMed. Image Anal.54101910–910.1016/j.media.2019.02.010
87ZhangR.IsolaP.EfrosA. A.ShechtmanE.WangO.2018The unreasonable effectiveness of deep features as a perceptual metricProc. IEEE Conf. on Computer Vision and Pattern Recognition586595586–95IEEEPiscataway, NJ10.1109/CVPR.2018.00068
88ZhuJ.ShenY.ZhaoD.ZhouB.2020In-domain gan inversion for real image editingEuropean Conf. on Computer Vision592608592–608SpringerCham
89ZhuJ.-Y.KrähenbühlP.ShechtmanE.EfrosA. A.2016Generative visual manipulation on the natural image manifoldEuropean Conf. on Computer Vision597613597–613SpringerCham