References
1StulikD.MillerD.KhanjianH.KhandekarN.CarlsonJ.WolbersR.PetersenW. C.Solvent Gels for the Cleaning of Works of Art: The Residue Question2004Getty PublicationsLos Angeles, CA
2Digney-PeerS.ThomasK.PerryR.TownsendJ.GrittS.The imitative retouching of easel paintingsConservation of Easel Paintings2020RoutledgeOxfordshire626653626–53
3ShresthaR.HardebergJ. Y.Evaluation and comparison of multispectral imaging systemsProc. IS&T CIC22: Twenty-Second Color and Imaging Conf.2014IS&TSpringfield, VA107112107–12
4CucciC.CasiniA.Hyperspectral imaging for artworks investigationData Handling in Science and Technology2019Vol. 32ElsevierAmsterdam583604583–604
5DeborahH.GeorgeS.HardebergJ. Y.Pigment mapping of the Scream (1893) based on hyperspectral imagingImage and Signal Processing: 6th Int’l. Conf., ICISP 2014, Cherbourg, France, June 30–July 22014SpringerCham247256247–56
6JanssensK.Van der SnicktG.VanmeertF.LegrandS.NuytsG.AlfeldM.MonicoL.AnafW.De NolfW.VermeulenM.VerbeeckJ.2017Non-invasive and non-destructive examination of artistic pigments, paints, and paintings by means of X-ray methodsAnalytical Chemistry for Cultural Heritage7712877–128Springer10.1007/s41061-016-0079-2
7van der MeerF. D.van der WerffH. M.A.van RuitenbeekF. J. A.HeckerC. A.BakkerW. H.NoomenM. F.van der MeijdeM.CarranzaE. J. M.Boudewijn de SmethJ.WoldaiT.2012Multi- and hyperspectral geologic remote sensing: A reviewInt. J. Appl. Earth Obs. Geoinformation14112128112–2810.1016/j.jag.2011.08.002
8DaleL. M.ThewisA.BoudryC.RotarI.DardenneP.BaetenV.Fernández PiernaJ. A.2013Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: A reviewAppl. Spectrosc. Rev.48142159142–5910.1080/05704928.2012.705800
9LuG.FeiB.2014Medical hyperspectral imaging: A reviewJ. Biomed. Opt.191241–2410.1117/1.JBO.19.9.096013
10EdelmanG.GastonE.van LeeuwenT.CullenP. J.AaldersM. C. G.2012Hyperspectral imaging for non-contact analysis of forensic tracesForensic Sci. Int.223283928–3910.1016/j.forsciint.2012.09.012
11LiQ.HeX.WangY.LiuH.XuD.GuoF.2013Review of spectral imaging technology in biomedical engineering: Achievements and challengesJ. Biomed. Opt.181291–29
12FischerC.KakoulliI.2006Multispectral and hyperspectral imaging technologies in conservation: Current research and potential applicationsStud. Conservation513163–1610.1179/sic.2006.51.Supplement-1.3
13ArteagaY.HardebergJ. Y.BoustC.Hdr multispectral imaging-based brdf measurement using flexible robot arm systemProc. IS&T CIC30: Thirtieth Color and Imaging Conf.2022IS&TSpringfield, VA758075–8010.2352/CIC.2022.30.1.15
14ChaneC. S.MansouriA.MarzaniF. S.BoochsF.2013Integration of 3d and multispectral data for cultural heritage applications: Survey and perspectivesImage Vision Comput.319110291–10210.1016/j.imavis.2012.10.006
15TaftW. S.MayerJ. W.2001The science of paintingsMeas. Sci. Technol.12653653653–
16RubensP. P.The Virgin as the Woman of the ApocalypseJ. Paul Getty MuseumLos Angeles, CA162316241623–4
17TownsendJ. H.Painting techniques and materials of Turner and other British artists 1775–1875Historical Painting Techniques, Materials, and Studio Practice: Preprints of a Symposium1995University of LeidenThe Netherlands176185176–85
18BarrettS.StulikD. CAn integrated approach for the study of painting techniquesHistorical Painting Techniques, Materials, and Studio Practice: Preprints of a Symposium1995University of LeidenThe Netherlands6116–11
19SinclairE.The polychromy of Exeter and Salisbury Cathedrals: a preliminary comparisonHistorical Painting Techniques, Materials, and Studio Practice: Preprints of a Symposium1995University of LeidenThe Netherlands105110105–10
20BaxterW.WendtJ.LinM. C.IMPaSTo: A realistic, interactive model for paintProc. 3rd Int’l. Symposium on Non-photorealistic Animation and Rendering2004ACMNew York, NY4514845–148
21FuY.YuH.YehC.-K.ZhangJ.LeeT.-Y.2018High relief from brush paintingIEEE Trans. Vis. Comput. Graphics25276327762763–7610.1109/TVCG.2018.2860004
22PlissonJ. S.de ViguerieL.TahrouchtL.MenuM.DucouretG.2014Rheology of white paints: How Van Gogh achieved his famous impastoColloids Surf. A458134141134–4110.1016/j.colsurfa.2014.02.055
23GroenK.1997Investigation of the use of the binding medium by RembrandtZ. Kunsttechnologie und Konservierung2208211208–11
24ElkhuizenW. S.Dore-CallewaertT. W. J.LeonhardtE.VandivereA.SongY.PontS. C.GeraedtsJ. M.P.DikJ.2019Comparison of three 3D scanning techniques for paintings, as applied to Vermeer’s ’Girl with a Pearl EarringHeritage Sci.71221–2210.1186/s40494-019-0331-5
25GonzalezV.CotteM.WallezG.van LoonA.De NolfW.EvenoM.KeuneK.NobleP.DikJ.2019Unraveling the Composition of Rembrandt’s Impasto through the Identification of Unusual Plumbonacrite by Multimodal X-ray Diffraction AnalysisAngew. Chem.131567556785675–810.1002/ange.201813105
26MandalD. J.GeorgeS.PedersenM.BoustC.2021Influence of acquisition parameters on pigment classification using hyperspectral imagingJ. Imaging Sci. Technol.6505040610.2352/J.ImagingSci.Technol.2021.65.5.050406
27MandalD. J.PedersenM.GeorgeS.DeborahH.BoustC.2023An experiment-based comparative analysis of pigment classification algorithms using hyperspectral imagingJ. Imaging Sci. Technol.6703040310.2352/J.ImagingSci.Technol.2023.67.3.030403
28YonghuiZ.BernsR. S.TaplinL. A.CoddingtonJ.2008An investigation of multispectral imaging for the mapping of pigments in paintingsProc. SPIE681068100710.1117/12.765711
29BernsR. S.ImaiF. H.The use of multi-channel visible spectrum imaging for pigment identificationProc. 13th Triennal ICOM-CC Meeting2002CiteseerUniversity Park, PA217222217–22
30BernsR. S.ImaiF. H.Pigment identification of artist materials via multi-spectral imagingProc. IS&T/SID CIC9: Ninth Color Imaging Conf.2001IS&TSpringfield, VA859085–90
31AbedF. M.Pigment Identification of Paintings based on Kubelka-Munk Theory and Spectral Images2014Rochester Institute of TechnologyRochester, NY
32FukumotoK.TsumuraN.BernsR.Estimating concentrations of pigments using encoder-decoder type of neural networkProc. IS&T CIC27: Twenty-seven Color and Imaging Conf.2019IS&TSpringfield, VA149152149–5210.2352/issn.2169-2629.2019.27.28
33FukumotoK.TsumuraN.BernsR.2020Estimating pigment concentrations from spectral images using an encoder decoder neural networkJ. Imaging Sci. Technol.6403050210.2352/J.ImagingSci.Technol.2020.64.3.030502
34FiorucciM.KhoroshiltsevaM.PontilM.TravigliaA.BueA. D.JamesS.2020Machine learning for cultural heritage: A surveyPattern Recognit. Lett.133102108102–810.1016/j.patrec.2020.02.017
35SmirnovS.EguizabalA.Deep learning for object detection in fine-art paintings2018 Metrology for Archaeology and Cultural Heritage (Metro Archaeo)2018IEEEPiscataway, NJ454945–910.1109/MetroArchaeo43810.2018.9089828
36BalasC.EpitropouG.TsaprasA.HadjinicolaouN.2018Hyperspectral imaging and spectral classification for pigment identification and mapping in paintings by El Greco and his workshopMultimedia Tools Appl.77973797519737–5110.1007/s11042-017-5564-2
37VishnuS.NidamanuriR. R.BremananthR.2013Spectral material mapping using hyperspectral imagery: a review of spectral matching and library search methodsGeocarto Int.28171190171–9010.1080/10106049.2012.665498
38KeshavaN.2004Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral librariesIEEE Trans. Geosci. Remote Sens.42155215651552–6510.1109/TGRS.2004.830549
39LiJ.HibbertD. B.FullerS.CattleJ.WayC. P.2005Comparison of spectra using a Bayesian approach. An argument using oil spills as an exampleAnal. Chem.77639644639–4410.1021/ac048894j
40CerraD.BieniarzJ.AvbeljJ.MüllerR.ReinartzP.Spectral matching through data compressionISPRS Workshop on High-Resolution Earth Imaging for Geospatial Information2011Vol. XXXVIII-4/W19CopernicusGöttingen141–410.5194/isprsarchives-XXXVIII-4-W19-75-2011
41MengtingG.PingliF.2014Preliminary study on the application of hyperspectral imaging in the classification of and identification Chinese traditional pigments classification—a case study of spectral angle mapperSci. Conservation Archaeology4768376–83
42De CarvalhoO. A.MenesesP. R.Spectral correlation mapper (SCM): an improvement on the spectral angle mapper (SAM)Summaries of the 9th JPL Airborne Earth Science Workshop2000Vol. 9JPL PublicationPasadena, CA
43GeorgeS.HardebergJ. Y.Ink classification and visualisation of historical manuscripts: Application of hyperspectral imaging2015 13th Int’l. Conf. on Document Analysis and Recognition (ICDAR)2015IEEEPiscataway, NJ113111351131–510.1109/ICDAR.2015.7333937
44DeepthiD.DevassyB. M.GeorgeS.NussbaumP.ThomasT.2022Classification of forensic hyperspectral paper data using hybrid spectral similarity algorithmsJ. Chemometr.36e338710.1002/cem.3387
45ChengF.ZhangP.WangS.HuB.2018A study on classification of mineral pigments based on spectral angle mapper and decision treeProc. SPIE10806108065Z10.1117/12.2503088
46MingyanG.ShuqiangL.MiaoleH.MaS.GaoZ.BaiS.ZhouP.Classification and recognition of tomb information in hyperspectral imageInt’l. Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences-ISPRS Archives2018Vol. 42411416411–6
47KleynhansT.Schmidt PattersonCatherine M.DooleyKathryn AMessingerDavid WDelaneyJohn K2020An alternative approach to mapping pigments in paintings with hyperspectral reflectance image cubes using artificial intelligenceHeritage Sci.81161–1610.1186/s40494-020-00427-7
48LiuL.MitevaT.DelnevoG.MirriS.WalterP.de ViguerieL.PouyetE.2023Neural Networks for Hyperspectral Imaging of Historical Paintings: A Practical ReviewSensors23241910.3390/s23052419
49ChenA.JesusR.VilariguesM.Convolutional neural network-based pure paint pigment identification using hyperspectral imagesACM Multimedia Asia2021Association for Computing Machinery171–710.1145/3469877.3495641
50GowerJ. C.1985Properties of Euclidean and non-Euclidean distance matricesLinear Algebra and its Applications67819781–9710.1016/0024-3795(85)90187-9
51KruseF. A.LefkoffA. B.BoardmanJ. W.HeidebrechtK. B.ShapiroA. T.BarloonP. J.GoetzA. F. H.The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer dataRemote Sensing of Environment1993Vol. 44145163145–63
52de Carvalho JúniorO.GuimarãesR.GillespieA.SilvaN.GomesR.2011A new approach to change vector analysis using distance and similarity measuresRemote Sens.3247324932473–9310.3390/rs3112473
53ChangC.-I.2000An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysisIEEE Trans. Information Theory46192719321927–3210.1109/18.857802
54KerekesJ. P.CiszA. P.SimmonsR. E.2005A comparative evaluation of spectral quality metrics for hyperspectral imageryProc. SPIE580610.1117/12.605916
55DuY.ChangC.-I.RenH.ChangC.-C.JensenJ. O.D’AmicoF. M.2004New hyperspectral discrimination measure for spectral characterizationOpt. Eng.43177717861777–8610.1117/1.1805563
56Naresh KumarM.SeshasaiM. V. R.Vara PrasadK. S.KamalaV.RamanaK. V.DwivediR. S.RoyP. S.2011A new hybrid spectral similarity measure for discrimination among Vigna speciesInt. J. Remote Sens.32404140534041–5310.1080/01431161.2010.484431
57PadmaS.SanjeeviS.2014Jeffries matusita-spectral angle mapper (JM-SAM) spectral matching for species level mapping at Bhitarkanika, Muthupet and Pichavaram mangrovesInt. Arch. Photogramm. Remote Sens. Spatial Information Sciences40140314111403–1110.5194/isprsarchives-XL-8-1403-2014
58WangL.Support Vector Machines: Theory and Applications2005Vol. 177SpringerCham
59BoserB. E.GuyonI. M.VapnikV. N.A training algorithm for optimal margin classifiersProc. Fifth Annual Workshop on Computational Learning Theory1992ACMNew York, NY144152144–5210.1145/130385.130401
60NobleW. S.2006What is a support vector machine?Nature Biotech.24156515671565–710.1038/nbt1206-1565
61AbiodunO. I.JantanA.OmolaraA. E.DadaK. V.MohamedN. A.ArshadH.2018State-of-the-art in artificial neural network applications: A surveyHeliyon4e0093810.1016/j.heliyon.2018.e00938
62RonnebergerO.FischerP.BroxT.U-net: Convolutional networks for biomedical image segmentationInt’l. Conf. on Medical Image Computing and Computer-assisted Intervention2015SpringerCham234241234–4110.1007/978-3-319-24574-4_28
63YuS.JiaS.XuC.2017Convolutional neural networks for hyperspectral image classificationNeurocomputing219889888–9810.1016/j.neucom.2016.09.010
64HongD.GaoL.YaoJ.ZhangB.PlazaA.ChanussotJ.2021Graph convolutional networks for hyperspectral image classificationIEEE Trans. Geosci. Remote Sens.59596659785966–7810.1109/TGRS.2020.3015157
65HuW.HuangY.LiW.ZhangF.LiH.2015Deep convolutional neural networks for hyperspectral image classificationJ. Sensors20151121–1210.1155/2015/258619
66
67
68
69
70SaundersD.CupittJ.1993Image Processing at the National Gallery: The VASARI ProjectNational Gallery technical bulletin14728572–85
71
72TanL.HouM.A study on the application of SAM classification algorithm in seal of calligraphy and painting based on hyperspectral technology2016 4th Int’l. Workshop on Earth Observation and Remote Sensing Applications (EORSA)2016IEEEPiscataway, NJ415418415–810.1109/EORSA.2016.7552841
73WeertsH. J. P.MuellerA. C.VanschorenJ.
74MüllerA. C.GuidoS.Introduction to Machine Learning with Python: A Guide for Data Scientists2016O’Reilly Media, Inc.Sebastopol, CA
75O’MalleyT.BurszteinE.LongJ.CholletF.JinH.InvernizziL.
76ShortenC.KhoshgoftaarT. M.2019A survey on image data augmentation for deep learningJ. Big Data61481–4810.1186/s40537-019-0197-0
77WenQ.SunL.YangF.SongX.GaoJ.WangX.XuH.
78McfeeB.HumphreyE. J.BelloJ. P.A software framework for musical data augmentationISMIR2015Vol. 2015CiteseerUniversity Park, PA248254248–54
79BjerrumE. J.GlahderM.SkovT.
80DavenportW. B.RootW. L.An Introduction to the Theory of Random Signals and Noise1958Vol. 159McGraw-HillNew York
81BoyatA. K.JoshiB. K.
82CongaltonR. G.1991A review of assessing the accuracy of classifications of remotely sensed dataRemote Sens. Environ.37354635–4610.1016/0034-4257(91)90048-B
83JiL.GongP.GengX.ZhaoY.2015Improving the accuracy of the water surface cover type in the 30 m FROM-GLC productRemote Sens.7135071352713507–2710.3390/rs71013507
84GrayA.MarkelJ.1974A spectral-flatness measure for studying the autocorrelation method of linear prediction of speech analysisIEEE Trans. Acoustics, Speech, Signal Process.22207217207–1710.1109/TASSP.1974.1162572
85BenestyJ.ChenJ.HuangY.CohenI.2009Pearson correlation coefficientNoise Reduction in Speech Processing141–4SpringerBerlin, Heidelberg10.1007/978-3-642-00296-0_5
86BouquillonA.LigovichG.RoisineG.2019De la couleur du bestiaire “esmaillé” de PalissyTechnè. La science au service de l’histoire de l’art et de la préservation des biens culturels47516051–60
87MuseumL.