Abstract Laser-induced forward transfer, or LIFT, is a direct-write technique that enables nozzle-free, non-contact printing of 3-dimensional pixels or voxels of suspensions of functional materials across a wide range of viscosities with micrometer resolution. Printing of
low-viscosity (<0.1 Pa s) nanoparticle (NP) inks by LIFT is in many ways similar to inkjet printing, where the cured voxel size and shape are determined by its interaction with the substrate. LIFT is also compatible with NP pastes of very high viscosity (>100 Pa s)
and high solids content (>80 wt%), resulting in printed voxels that precisely replicate the shape and size of the laser transferring pulse. This LIFT regime, known as laser decal transfer or LDT, allows the congruent printing of highly loaded colloids and suspensions, unlike any existing
direct-write process. This work compares LIFT of low-viscosity NP inks with LDT of high-viscosity NP pastes in terms of the voxels of silver NP suspensions printed by each technique. It also presents advances in a new digital fabrication technique using a spatial light modulator to change
the size and shape of the LDT laser pulse, resulting in the dynamic reconfiguration of individual voxels. This enables a new level of parallelization unlike current serial direct-write processes, since each voxel can be varied according to the pattern design. An overview of the opportunities
and challenges associated with LIFT of NP suspensions forms part of the conclusions.