Back to articles
Articles
Volume: 32 | Article ID: art00021
Image
DNN-based ISP Parameter Inference Algorithm for Automatic Image Quality Optimization
  DOI :  10.2352/ISSN.2470-1173.2020.9.IQSP-315  Published OnlineJanuary 2020
Abstract

In camera development, because the image quality is subjective and the tuning complexity is increasing, building a correlated model with image signal processor (ISP) pipeline is very demanding task. In order to overcome those problems, this paper proposes an automatic image quality tuning framework based on Deep Neural Network (DNN). The image quality metric (IQM) have been defined to quantifies subjective image quality, which effectively represents the actual user perception. In this way, fast reproduction of the desired image has been possible through the minimized computing resource. Proposed Optimization methodology consists of Phase 1, a ISP modeling, and Phase 2, parameter optimization. Phase 1 construct a model between the parameters of ISP and the image quality metric. At phase 2, we add partially connected layer at input layer in order to optimize the parameters of ISP. Using backpropagation approach, the network selectively updates only the weights of partial connections, which allow to automatically derive the optimal parameters for high quality image. This idea has been implemented and experimented through commercial 16 Mega pixel resolution CMOS image sensor (CIS) and the state-of-the art ISP.

Subject Areas :
Views 218
Downloads 83
 articleview.views 218
 articleview.downloads 83
  Cite this article 

Younghoon Kim, Jungmin Lee, Sung-Su Kim, Cheoljong Yang, TaeHyung Kim, JoonSeo Yim, "DNN-based ISP Parameter Inference Algorithm for Automatic Image Quality Optimizationin Proc. IS&T Int’l. Symp. on Electronic Imaging: Image Quality and System Performance XVII,  2020,  pp 315-1 - 315-6,  https://doi.org/10.2352/ISSN.2470-1173.2020.9.IQSP-315

 Copy citation
  Copyright statement 
Copyright © Society for Imaging Science and Technology 2020
72010604
Electronic Imaging
2470-1173
Society for Imaging Science and Technology
7003 Kilworth Lane, Springfield, VA 22151 USA