Practical steganalysis inevitably involves the necessity to deal with a diverse cover source. In the JPEG domain, one key element of the diversification is the JPEG quality factor, or, more generally, the JPEG quantization table used for compression. This paper investigates experimentally
the scalability of various steganalysis detectors w.r.t. JPEG quality. In particular, we report that CNN detectors as well as older feature-based detectors have the capacity to contain the complexity of multiple JPEG quality factors within a single model when the quality factors are properly
grouped based on their quantization tables. Detectors trained on multiple JPEG qualities show no loss of detection accuracy when compared with dedicated detectors trained for a specific JPEG quality factor. We also demonstrate that CNNs (but not so much feature-based classifiers) trained on
multiple qualities can generalize to unseen custom quantization tables compared to detectors trained for specific JPEG qualities. Their ability to generalize to very different quantization tables, however, remains a challenging task. A semi-metric comparing quantization tables is introduced
and used to interpret our results.