Most sports competitions are still judged by humans; the process of judging itself is not only skill and experience demanding but also at the risk of errors and unfairness. Advances in sensing and computing technologies have found successful applications to assist human judges with the refereeing process (e.g., the wellknown Hawk-Eye system). Along this line of research, we propose to develop a computer vision (CV)-based objective synchronization scoring system for synchronized diving - a relatively young Olympic sport. In synchronized diving, subjective judgement is often difficult due to the rapidness of human motion, the limited viewing angles as well as the shortness of human memory, which inspires our development of an automatic and objective scoring system. Our CV-based scoring system consists of three components: (1) Background estimation using color and optical flow clues that can effectively segment the silhouette of both divers from the input video; (2) Feature extraction using histogram of oriented-gradients (HOG) and stick figures to obtain an abstract representation of each diver's posture invariant to body attributes (e.g., height and weight); (3) Synchronization evaluation by training a feed-forward neural network using cross-validation. We have tested the designed system on 22 diving video collected at 2012 London Olympic Games. Our experimental results have shown that CV-based approach can accurately produce synchronization scores that are close to the ones given by human judges with a MSE of as low as 0.24.
Yixin Du, Xin Li, "Toward Automatic and Objective Evaluation of Synchronization in Synchronized Diving Video" in Proc. IS&T Int’l. Symp. on Electronic Imaging: Visual Information Processing and Communication IX, 2018, pp 205-1 - 205-7, https://doi.org/10.2352/ISSN.2470-1173.2018.2.VIPC-205