Back to articles
Volume: 29 | Article ID: art00008
Image Quality Assessment by Comparing CNN Features between Images
  DOI :  10.2352/ISSN.2470-1173.2017.12.IQSP-225  Published OnlineJanuary 2017

Finding an objective image quality metric that matches the subjective quality has always been a challenging task. We propose a new full reference image quality metric based on features extracted from Convolutional Neural Networks (CNNs). Using a pre-trained AlexNet model, we extract feature maps of the test and reference images at multiple layers, and compare their feature similarity at each layer. Such similarity scores are then pooled across layers to obtain an overall quality value. Experimental results on four state-of-the-art databases show that our metric is either on par or outperforms 10 other state-of-the-art metrics, demonstrating that CNN features at multiple levels are superior to handcrafted features used in most image quality metrics in capturing aspects that matter for discriminative perception. © 2016 Society for Imaging Science and Technology.

Subject Areas :
Views 112
Downloads 15
 articleview.views 112
 articleview.downloads 15
  Cite this article 

Seyed Ali Amirshahi, Marius Pedersen, Stella X. Yu, "Image Quality Assessment by Comparing CNN Features between Imagesin Proc. IS&T Int’l. Symp. on Electronic Imaging: Image Quality and System Performance XIV,  2017,  pp 42 - 51,

 Copy citation
  Copyright statement 
Copyright © Society for Imaging Science and Technology 2017
Electronic Imaging
Society for Imaging Science and Technology